1. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Yatabe Y, Borczuk AC, Powell CA. Do all lung adenocarcinomas follow a stepwise progression? Lung Cancer, 2011, 74(1): 7-11.
|
3. |
Hirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: Current therapies and new targeted treatments. Lancet, 2017, 389(10066): 299-311.
|
4. |
中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗学专业委员会, 中国医师协会放射治疗医师分会. 早期非小细胞肺癌立体定向放疗中国专家共识(2019 版). 中华肿瘤杂志, 2020, 42(7): 522-530.
|
5. |
Moumtzi D, Lampaki S, Zarogoulidis P, et al. Prognostic factors for long term survival in patients with advanced non-small cell lung cancer. Ann Transl Med, 2016, 4(9): 161.
|
6. |
Devarakonda S, Morgensztern D, Govindan R. Genomic alterations in lung adenocarcinoma. Lancet Oncol, 2015, 16(7): e342-e351.
|
7. |
Kim HP, Cho GA, Han SW, et al. Novel fusion transcripts in human gastric cancer revealed by transcriptome analysis. Oncogene, 2014, 33(47): 5434-5441.
|
8. |
Nacu S, Yuan W, Kan Z, et al. Deep RNA sequencing analysis of readthrough gene fusions in human prostate adenocarcinoma and reference samples. BMC Med Genomics, 2011, 4: 11.
|
9. |
Tang Y, Qin F, Liu A, et al. Recurrent fusion RNA DUS4L-BCAP29 in non-cancer human tissues and cells. Oncotarget, 2017, 8(19): 31415-31423.
|
10. |
Tang Y, Guan F, Li H. Case study: The recurrent fusion RNA DUS4L-BCAP29 in noncancer human tissues and cells. Methods Mol Biol, 2020, 2079: 243-258.
|
11. |
Tang Y, Ma S, Wang X, et al. Identification of chimeric RNAs in human infant brains and their implications in neural differentiation. Int J Biochem Cell Biol, 2019, 111: 19-26.
|
12. |
Raine EV, Wreglesworth N, Dodd AW, et al. Gene expression analysis reveals HBP1 as a key target for the osteoarthritis susceptibility locus that maps to chromosome 7q22. Ann Rheum Dis, 2012, 71(12): 2020-2027.
|
13. |
Hämäläinen S, Solovieva S, Vehmas T, et al. Genetic influences on hand osteoarthritis in Finnish women—A replication study of candidate genes. PLoS One, 2014, 9(5): e97417.
|
14. |
Li Z, Yin C, Li B, et al. DUS4L silencing suppresses cell proliferation and promotes apoptosis in human lung adenocarcinoma cell line A549. Cancer Manag Res, 2020, 12: 9905-9913.
|
15. |
Ieta K, Tanaka F, Yokobori T, et al. Clinicopathological significance of stanniocalcin 2 gene expression in colorectal cancer. Int J Cancer, 2009, 125(4): 926-931.
|
16. |
Kita Y, Mimori K, Iwatsuki M, et al. STC2: A predictive marker for lymph node metastasis in esophageal squamous-cell carcinoma. Ann Surg Oncol, 2011, 18(1): 261-272.
|
17. |
Meyer HA, Tölle A, Jung M, et al. Identification of stanniocalcin 2 as prognostic marker in renal cell carcinoma. Eur Urol, 2009, 55(3): 669-678.
|
18. |
Yokobori T, Mimori K, Ishii H, et al. Clinical significance of stanniocalcin 2 as a prognostic marker in gastric cancer. Ann Surg Oncol, 2010, 17(10): 2601-2607.
|
19. |
Na SS, Aldonza MB, Sung HJ, et al. Stanniocalcin-2 (STC2): A potential lung cancer biomarker promotes lung cancer metastasis and progression. Biochim Biophys Acta, 2015, 1854(6): 668-676.
|
20. |
Zeiger W, Ito D, Swetlik C, et al. Stanniocalcin 2 is a negative modulator of store-operated calcium entry. Mol Cell Biol, 2011, 31(18): 3710-3722.
|
21. |
Liu YN, Tsai MF, Wu SG, et al. Acquired resistance to EGFR tyrosine kinase inhibitors is mediated by the reactivation of STC2/JUN/AXL signaling in lung cancer. Int J Cancer, 2019, 145(6): 1609-1624.
|
22. |
Yu JJ, Zhou DD, Yang XX, et al. TRIB3-EGFR interaction promotes lung cancer progression and defines a therapeutic target. Nat Commun, 2020, 11(1): 3660.
|
23. |
Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res, 2008, 14(21): 6735-6741.
|
24. |
Koch AE, Polverini PJ, Kunkel SL, et al. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science, 1992, 258(5089): 1798-1801.
|
25. |
Li A, Dubey S, Varney ML, et al. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol, 2003, 170(6): 3369-3376.
|
26. |
Folkman J, Cotran R. Relation of vascular proliferation to tumor growth. Int Rev Exp Pathol, 1976, 16: 207-248.
|
27. |
Yuan A, Yang PC, Yu CJ, et al. Interleukin-8 messenger ribonucleic acid expression correlates with tumor progression, tumor angiogenesis, patient survival, and timing of relapse in non-small-cell lung cancer. Am J Respir Crit Care Med, 2000, 162(5): 1957-1963.
|
28. |
Smith DR, Polverini PJ, Kunkel SL, et al. Inhibition of interleukin 8 attenuates angiogenesis in bronchogenic carcinoma. J Exp Med, 1994, 179(5): 1409-1415.
|
29. |
Arenberg DA, Kunkel SL, Polverini PJ, et al. Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J Clin Invest, 1996, 97(12): 2792-2802.
|
30. |
Sanmamed MF, Carranza-Rua O, Alfaro C, et al. Serum interleukin-8 reflects tumor burden and treatment response across malignancies of multiple tissue origins. Clin Cancer Res, 2014, 20(22): 5697-5707.
|
31. |
Fernando RI, Hamilton DH, Dominguez C, et al. IL-8 signaling is involved in resistance of lung carcinoma cells to erlotinib. Oncotarget, 2016, 7(27): 42031-42044.
|
32. |
Dabkeviciene D, Jonusiene V, Zitkute V, et al. The role of interleukin-8 (CXCL8) and CXCR2 in acquired chemoresistance of human colorectal carcinoma cells HCT116. Med Oncol, 2015, 32(12): 258.
|
33. |
Sanmamed MF, Perez-Gracia JL, Schalper KA, et al. Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients. Ann Oncol, 2017, 28(8): 1988-1995.
|
34. |
Keskin S, Kutluk AC, Tas F. Prognostic and predictive role of angiogenic markers in non- small cell lung cancer. Asian Pac J Cancer Prev, 2019, 20(3): 733-736.
|
35. |
Fousek K, Horn LA, Palena C. Interleukin-8: A chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression. Pharmacol Ther, 2021, 219: 107692.
|
36. |
Horn LA, Riskin J, Hempel HA, et al. Simultaneous inhibition of CXCR1/2, TGF-β, and PD-L1 remodels the tumor and its microenvironment to drive antitumor immunity. J Immunother Cancer, 2020, 8(1): e000326.
|
37. |
Sun L, Clavijo PE, Robbins Y, et al. Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy. JCI Insight, 2019, 4(7): e126853.
|