1. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
张春芳, 曾强, 王维民, 等. 体检人群肺癌筛查低剂量螺旋CT检出率与成本分析. 中华肿瘤防治杂志, 2015, 22(4): 247-251.
|
3. |
周清华, 范亚光, 王颖, 等. 中国肺癌低剂量螺旋CT筛查指南(2018年版). 中国肺癌杂志, 2018, 21(2): 67-75.
|
4. |
Naidich DP, Marshall CH, Gribbin C, et al. Low-dose CT of the lungs: Preliminary observations. Radiology, 1990, 175(3): 729-731.
|
5. |
Kim JH, Yoon HJ, Lee E, et al. Validation of deep-learning image reconstruction for low-dose chest computed tomography scan: Emphasis on image quality and noise. Korean J Radiol, 2021, 22(1): 131-138.
|
6. |
Khorrami M, Jain P, Bera K, et al. Predicting pathologic response to neoadjuvant chemoradiation in resectable stage Ⅲ non-small cell lung cancer patients using computed tomography radiomic features. Lung Cancer, 2019, 135: 1-9.
|
7. |
Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med, 2019, 25(6): 954-961.
|
8. |
Amyar A, Modzelewski R, Li H, et al. Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation. Comput Biol Med, 2020, 126: 104037.
|
9. |
Nam JG, Park S, Hwang EJ, et al. Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology, 2019, 290(1): 218-228.
|
10. |
Beig N, Khorrami M, Alilou M, et al. Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas. Radiology, 2019, 290(3): 783-792.
|
11. |
Yedururi S, Morani AC, Katabathina VS, et al. Machine learning and deep learning in oncologic imaging: Potential hurdles, opportunities for improvement, and solutions-abdominal imagers' perspective. J Comput Assist Tomogr, 2021, 45(6): 805-811.
|
12. |
Chabon JJ, Hamilton EG, Kurtz DM, et al. Integrating genomic features for non-invasive early lung cancer detection. Nature, 2020, 580(7802): 245-251.
|
13. |
Wang R, Zhao X, Chen X, et al. Rolling circular amplification (RCA)-assisted CRISPR/Cas9 cleavage (RACE) for highly specific detection of multiple extracellular vesicle microRNAs. Anal Chem, 2020, 92(2): 2176-2185.
|
14. |
Mathios D, Johansen JS, Cristiano S, et al. Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nat Commun, 2021, 12(1): 5060.
|
15. |
Ying L, Du L, Zou R, et al. Development of a serum miRNA panel for detection of early stage non-small cell lung cancer. Proc Natl Acad Sci U S A, 2020, 117(40): 25036-25042.
|
16. |
Sullivan FM, Mair FS, Anderson W, et al. Earlier diagnosis of lung cancer in a randomised trial of an autoantibody blood test followed by imaging. Eur Respir J, 2021, 57(1): 2000670.
|
17. |
Xie Y, Meng WY, Li RZ, et al. Early lung cancer diagnostic biomarker discovery by machine learning methods. Transl Oncol, 2021, 14(1): 100907.
|
18. |
Wang Y, Luo J, Liu J, et al. Label-free microfluidic paper-based electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers. Biosens Bioelectron, 2019, 136: 84-90.
|
19. |
中国肺癌防治联盟, 中华医学会呼吸病学分会肺癌学组, 中国医师协会呼吸医师分会肺癌工作委员会. 肺癌筛查与管理中国专家共识. 国际呼吸杂志, 2019, 39(21): 1604-1615.
|
20. |
胡洁, 洪群英. 肺部结节诊治中国专家共识. 中华结核和呼吸杂志, 2015, 38(4): 249-254.
|
21. |
Righettoni M, Amann A, Pratsinis SE. Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Mater Today, 2015, 18(3): 163-71.
|
22. |
Yoon JW, Lee JH. Toward breath analysis on a chip for disease diagnosis using semiconductor-based chemiresistors: Recent progress and future perspectives. Lab Chip, 2017, 17(21): 3537-3557.
|
23. |
Saidi T, Moufid M, Beleno-Saenz KD, et al. Non-invasive prediction of lung cancer histological types through exhaled breath analysis by UV-irradiated electronic nose and GC/QTOF/MS. Sens Actuator B-Chem, 2020, 311: 11.
|
24. |
Tai HL, Wang S, Duan ZH, et al. Evolution of breath analysis based on humidity and gas sensors: Potential and challenges. Sens Actuator B-Chem, 2020, 318: 27.
|
25. |
Infante M, Cavuto S, Lutman FR, et al. A randomized study of lung cancer screening with spiral computed tomography: Three-year results from the DANTE trial. Am J Respir Crit Care Med, 2009, 180(5): 445-453.
|
26. |
Blanchon T, Bréchot JM, Grenier PA, et al. Baseline results of the Depiscan study: A French randomized pilot trial of lung cancer screening comparing low dose CT scan (LDCT) and chest X-ray (CXR). Lung Cancer, 2007, 58(1): 50-58.
|
27. |
Ding H, Xia W, Zhang L, et al. CT-based deep learning model for invasiveness classification and micropapillary pattern prediction within lung adenocarcinoma. Front Oncol, 2020, 10: 1186.
|
28. |
Cui S, Ming S, Lin Y, et al. Development and clinical application of deep learning model for lung nodules screening on CT images. Sci Rep, 2020, 10(1): 13657.
|
29. |
Espinoza JL, Dong LT. Artificial intelligence tools for refining lung cancer screening. J Clin Med, 2020, 9(12): 3860.
|