1. |
Bi X, Yang C, Song Y, et al. Quantitative fragmented QRS has a good diagnostic value on myocardial fibrosis in hypertrophic obstructive cardiomyopathy based on clinical-pathological study. BMC Cardiovasc Disord, 2020, 20(1): 298.
|
2. |
Raman B, Ariga R, Spartera M, et al. Progression of myocardial fibrosis in hypertrophic cardiomyopathy: Mechanisms and clinical implications. Eur Heart J Cardiovasc Imaging, 2019, 20(2): 157-167.
|
3. |
Melacini P, Basso C, Angelini A, et al. Clinicopathological profiles of progressive heart failure in hypertrophic cardiomyopathy. Eur Heart J, 2010, 31(17): 2111-2123.
|
4. |
张艳, 吴昆华, 李清, 等. 肥厚型心肌病患者心肌纤维化范围的相关因素分析. 中华心血管病杂志, 2021, 49(1): 31-36.
|
5. |
Olivotto I, Maron BJ, Appelbaum E, et al. Spectrum and clinical significance of systolic function and myocardial fibrosis assessed by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. Am J Cardiol, 2010, 106(2): 261-267.
|
6. |
张沫, 孙筱璐, 吴桂鑫, 等. 不同类型的非梗阻性肥厚型心肌病患者的临床及遗传学特征. 中华心血管病杂志, 2021, 49(6): 593-600.
|
7. |
Huang L, Ran L, Zhao P, et al. MRI native T1 and T2 mapping of myocardial segments in hypertrophic cardiomyopathy: Tissue remodeling manifested prior to structure changes. Br J Radiol, 2019, 92(1104): 20190634.
|
8. |
周颖, 袁建松, 陈游洲, 等. Apelin通过TGF β-smads信号通路抑制肥厚型心肌病转基因小鼠心肌纤维化. 中华心力衰竭和心肌病杂志, 2017, 1(1): 32-39.
|
9. |
Olson EN. MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci Transl Med, 2014, 6(239): 239ps3.
|
10. |
Bittencourt MI, Cader SA, Araújo DV, et al. Role of myocardial fibrosis in hypertrophic cardiomyopathy: A systematic review and updated meta-analysis of risk markers for sudden death. Arq Bras Cardiol, 2019, 112(3): 281-289.
|
11. |
陈凤梅, 鲁星琴, 姚亚丽. 主动脉弹性与肥厚型心肌病及其心肌纤维化的关系. 国际心血管病杂志, 2020, 47(4): 207-210.
|
12. |
Moravsky G, Ofek E, Rakowski H, et al. Myocardial fibrosis in hypertrophic cardiomyopathy: Accurate reflection of histopathological findings by CMR. JACC Cardiovasc Imaging, 2013, 6(5): 587-596.
|
13. |
Gyöngyösi M, Winkler J, Ramos I, et al. Myocardial fibrosis: Biomedical research from bench to bedside. Eur J Heart Fail, 2017, 19(2): 177-191.
|
14. |
Nguyen MN, Kiriazis H, Gao XM, et al. Cardiac fibrosis and arrhythmogenesis. Compr Physiol, 2017, 7(3): 1009-1049.
|
15. |
Stempien-Otero A, Kim DH, Davis J. Molecular networks underlying myofibroblast fate and fibrosis. J Mol Cell Cardiol, 2016, 97: 153-161.
|
16. |
Travers JG, Kamal FA, Robbins J, et al. Cardiac fibrosis: The fibroblast awakens. Circ Res, 2016, 118(6): 1021-1040.
|
17. |
史承勇, 王波, 郭显, 等. 鞘鞍醇激酶-2在转化生长因子-β1诱导心脏成纤维细胞增殖与活化过程中作用. 临床军医杂志, 2019, 47(5): 525-528, 531.
|
18. |
张利芬, 李彬彬, 余宏宇. MicroRNA-484通过靶向肝星状细胞中Fis1调控肝纤维化进程. 第二军医大学学报, 2017, 38(9): 1146-1151.
|
19. |
黄秀, 张洋洋, 朱晓宇, 等. TGF-β1/Smads信号通路及其与肾脏纤维化关系的研究进展. 山东医药, 2019, 59(21): 103-107.
|
20. |
Inwood S, Buehler E, Betenbaugh M, et al. Identifying HIPK1 as target of miR-22-3p enhancing recombinant protein production from HEK 293 cell by using microarray and HTP siRNA screen. Biotechnol J. 2018, 13: 1-17.
|
21. |
Hong Y, Cao H, Wang Q, et al. MiR-22 may suppress fibrogenesis by targeting TGFβR I in cardiac fibroblasts. Cell Physiol Biochem, 2016, 40(6): 1345-1353.
|