1. |
Zheng RS, Zhang SW, He J, et al. Cancer incidence and mortality in China, 2016. JNCC, 2022, 2(1): 1-9.
|
2. |
Travis WD, Brambilla E, Burke AP, et al. Introduction to the 2015 World Health Organization classification of tumors of the lung, pleura, thymus, and heart. J Thorac Oncol, 2015, 10(9): 1240-1242.
|
3. |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin, 2022, 72(1): 7-33.
|
4. |
Zeng H, Chen W, Zheng R, et al. Changing cancer survival in China during 2003-15: A pooled analysis of 17 population-based cancer registries. Lancet Glob Health, 2018, 6(5): e555-e567.
|
5. |
赫捷, 李霓, 陈万青, 等. 中国肺癌筛查与早诊早治指南(2021, 北京). 中国肿瘤, 2021, 30(2): 81-111.
|
6. |
Davies JC, Wainwright CE, Canny GJ, et al. Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am J Respir Crit Care Med, 2013, 187(11): 1219-1225.
|
7. |
Sears CR, Mazzone PJ. Biomarkers in lung cancer. Clin Chest Med, 2020, 41(1): 115-127.
|
8. |
Sandfeld-Paulsen B, Jakobsen KR, Bæk R, et al. Exosomal proteins as diagnostic biomarkers in lung cancer. J Thorac Oncol, 2016, 11(10): 1701-1710.
|
9. |
Alipoor SD, Mortaz E, Varahram M, et al. The potential biomarkers and immunological effects of tumor-derived exosomes in lung cancer. Front Immunol, 2018, 9: 819.
|
10. |
Mo F, Xu Y, Zhang J, et al. Effects of hypoxia and radiation-induced exosomes on migration of lung cancer cells and angiogenesis of umbilical vein endothelial cells. Radiat Res, 2020, 194(1): 71-80.
|
11. |
Chen F, Wang X, Han X, et al. Diagnostic value of Cyfra21-1, SCC and CEA for differentiation of early-stage NSCLC from benign lung disease. Int J Clin Exp Med, 2015, 8(7): 11295-300.
|
12. |
Fang R, Zhu Y, Khadka VS, et al. The evaluation of serum biomarkers for non-small cell lung cancer (NSCLC) diagnosis. Front Physiol, 2018, 9: 1710.
|
13. |
Jiang ZF, Wang M, Xu JL. Thymidine kinase 1 combined with CEA, CYFRA21-1 and NSE improved its diagnostic value for lung cancer. Life Sci, 2018, 194: 1-6.
|
14. |
隋静. 肺癌lncRNA生物标志筛选及功能研究. 东南大学, 2020.
|
15. |
Huang Y, Qin S, Gu X, et al. Comprehensive assessment of serum hsa_circ_0070354 as a novel diagnostic and predictive biomarker in non-small cell lung cancer. Front Genet, 2022, 12: 796776.
|
16. |
Zhu X, Wang X, Wei S, et al. hsa_circ_0013958: A circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J, 2017, 284(14): 2170-2182.
|
17. |
Zhang Y, Zhao H, Zhang L. Identification of the tumor-suppressive function of circular RNA FOXO3 in non-small cell lung cancer through sponging miR-155. Mol Med Rep, 2018, 17(6): 7692-7700.
|
18. |
Wu KL, Tsai YM, Lien CT, et al. The roles of microRNA in lung cancer. Int J Mol Sci, 2019, 20(7): 1611.
|
19. |
Pan J, Zhou C, Zhao X, et al. A two-miRNA signature (miR-33a-5p and miR-128-3p) in whole blood as potential biomarker for early diagnosis of lung cancer. Sci Rep, 2018, 8(1): 16699.
|
20. |
Patnaik S, Mallick R, Kannisto E, et al. MiR-205 and MiR-375 microRNA assays to distinguish squamous cell carcinoma from adenocarcinoma in lung cancer biopsies. J Thorac Oncol, 2015, 10(3): 446-453.
|
21. |
Zhang B, Chen Z, Tao B, et al. m6A target microRNAs in serum for cancer detection. Mol Cancer, 2021, 20(1): 170.
|
22. |
Califf RM. Biomarker definitions and their applications. Exp Biol Med (Maywood), 2018, 243(3): 213-221.
|
23. |
Standfield L, Weston AR, Barraclough H, et al. Histology as a treatment effect modifier in advanced non-small cell lung cancer: A systematic review of the evidence. Respirology, 2011, 16(8): 1210-1220.
|
24. |
Bergethon K, Shaw AT, Ou SH, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol, 2012, 30(8): 863-870.
|
25. |
Shaw AT, Kim TM, Crinò L, et al. Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol, 2017, 18(7): 874-886.
|
26. |
Shaw AT, Solomon BJ, Chiari R, et al. Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: A multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol, 2019, 20(12): 1691-1701.
|
27. |
Michels S, Scheel AH, Scheffler M, et al. Clinicopathological characteristics of RET rearranged lung cancer in european patients. J Thorac Oncol, 2016, 11(1): 122-127.
|
28. |
Gautschi O, Milia J, Filleron T, et al. Targeting RET in patients with RET-rearranged lung cancers: Results from the global, multicenter RET registry. J Clin Oncol, 2017, 35(13): 1403-1410.
|
29. |
Lee SH, Lee JK, Ahn MJ, et al. Vandetanib in pretreated patients with advanced non-small cell lung cancer-harboring RET rearrangement: A phase Ⅱ clinical trial. Ann Oncol, 2017, 28(2): 292-297.
|
30. |
Drilon A, Rekhtman N, Arcila M, et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: An open-label, single-centre, phase 2, single-arm trial. Lancet Oncol, 2016, 17(12): 1653-1660.
|
31. |
Moosavi F, Giovannetti E, Saso L, et al. HGF/MET pathway aberrations as diagnostic, prognostic, and predictive biomarkers in human cancers. Crit Rev Clin Lab Sci, 2019, 56(8): 533-566.
|
32. |
Paik PK, Drilon A, Fan PD, et al. Response to MET inhibitors in patients with stage Ⅳ lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov, 2015, 5(8): 842-849.
|
33. |
Wolf J, Seto T, Han JY, et al. Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer. N Engl J Med, 2020, 383(10): 944-957.
|
34. |
Clarke JM, George DJ, Lisi S, et al. Immune checkpoint blockade: The new frontier in cancer treatment. Target Oncol, 2018, 13(1): 1-20.
|
35. |
Tsoukalas N, Kiakou M, Tsapakidis K, et al. PD-1 and PD-L1 as immunotherapy targets and biomarkers in non-small cell lung cancer. J BUON, 2019, 24(3): 883-888.
|
36. |
de Langen AJ, Johnson ML, Mazieres J, et al. Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRASG12C mutation: A randomised, open-label, phase 3 trial. Lancet, 2023, 401(10378): 733-746.
|
37. |
Jänne PA, van den Heuvel MM, Barlesi F, et al. Selumetinib plus docetaxel compared with docetaxel alone and progression-free survival in patients with KRAS-mutant advanced non-small cell lung cancer: The SELECT-1 randomized clinical trial. JAMA, 2017, 317(18): 1844-1853.
|
38. |
Nikolinakos PG, Altorki N, Yankelevitz D, et al. Plasma cytokine and angiogenic factor profiling identifies markers associated with tumor shrinkage in early-stage non-small cell lung cancer patients treated with pazopanib. Cancer Res, 2010, 70(6): 2171-2179.
|
39. |
Kim HR, Kang HN, Shim HS, et al. Co-clinical trials demonstrate predictive biomarkers for dovitinib, an FGFR inhibitor, in lung squamous cell carcinoma. Ann Oncol, 2017, 28(6): 1250-1259.
|
40. |
Ahmadzada T, Kao S, Reid G, et al. An update on predictive biomarkers for treatment selection in non-small cell lung cancer. J Clin Med, 2018, 7(6): 153.
|
41. |
Yang H, Liang SQ, Schmid RA, et al. New horizons in KRAS-mutant lung cancer: Dawn after darkness. Front Oncol, 2019, 9: 953.
|
42. |
Helsten T, Elkin S, Arthur E, et al. The FGFR landscape in cancer: Analysis of 4, 853 tumors by next-generation sequencing. Clin Cancer Res, 2016, 22(1): 259-267.
|
43. |
Thomson S, Petti F, Sujka-Kwok I, et al. Kinase switching in mesenchymal-like non-small cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy. Clin Exp Metastasis, 2008, 25(8): 843-854.
|
44. |
Ng TL, Yu H, Smith DE, et al. Preselection of lung cancer cases using FGFR1 mRNA and gene copy number for treatment with ponatinib. Clin Lung Cancer, 2019, 20(1): e39-e51.
|
45. |
Provencio M, Ortega AL, Coves-Sarto J, et al. Atezolizumab plus bevacizumab as first-line treatment for patients with metastatic nonsquamous non-small cell lung cancer with high tumor mutation burden: A nonrandomized controlled trial. JAMA Oncol, 2023, 9(3): 344-353.
|
46. |
Carbone DP, Reck M, Paz-Ares L, et al. First-line nivolumab in stage Ⅳ or recurrent non-small-cell lung cancer. N Engl J Med, 2017, 376(25): 2415-2426.
|
47. |
Velcheti V, Schalper KA, Carvajal DE, et al. Programmed death ligand-1 expression in non-small cell lung cancer. Lab Invest, 2014, 94(1): 107-116.
|
48. |
Qin S, Dong B, Yi M, et al. Prognostic values of TIM-3 expression in patients with solid tumors: A meta-analysis and database evaluation. Front Oncol, 2020, 10: 1288.
|
49. |
Cui S, Dong L, Qian J, et al. Classifying non-small cell lung cancer by status of programmed cell death ligand 1 and tumor-infiltrating lymphocytes on tumor cells. J Cancer, 2018, 9(1): 129-134.
|
50. |
Kamphorst AO, Pillai RN, Yang S, et al. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc Natl Acad Sci U S A, 2017, 114(19): 4993-4998.
|
51. |
Zhao P, Li L, Jiang X, et al. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J Hematol Oncol, 2019, 12(1): 54.
|
52. |
Boyiadzis MM, Kirkwood JM, Marshall JL, et al. Significance and implications of FDA approval of pembrolizumab for biomarker-defined disease. J Immunother Cancer, 2018, 6(1): 35.
|
53. |
Marchi PD, Berardinelli GN, Cavagna R, et al. Frequency of microsatellite instability (MSI) in Brazilian TKI non-treatable non-small cell lung cancer (NSCLC) patients. J Thorac Oncol, 2019, 14(10): S973.
|
54. |
黄川, 杨雪. 非小细胞肺癌免疫治疗生物标志物的研究进展. 中国肺癌杂志, 2021, 24(11): 777-783.
|
55. |
Alexander M, Galeas J, Cheng H. Tumor mutation burden in lung cancer: A new predictive biomarker for immunotherapy or too soon to tell? J Thorac Dis, 2018, 10(Suppl 33): S3994-S3998.
|
56. |
雷芸, 闫春良, 薛旗山, 等. VEGF、VEGFR在NSCLC组织中的表达及临床意义. 癌症进展, 2019, 17(13): 1573-1575.
|
57. |
Lin Q, Guo L, Lin G, et al. Clinical and prognostic significance of OPN and VEGF expression in patients with non-small-cell lung cancer. Cancer Epidemiol, 2015, 39(4): 539-544.
|
58. |
Wulaningsih W, Holmberg L, Garmo H, et al. Serum lactate dehydrogenase and survival following cancer diagnosis. Br J Cancer, 2015, 113(9): 1389-1396.
|
59. |
Mezquita L, Auclin E, Ferrara R, et al. Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. JAMA Oncol, 2018, 4(3): 351-357.
|
60. |
Xu F, Lin H, He P, et al. A TP53-associated gene signature for prediction of prognosis and therapeutic responses in lung squamous cell carcinoma. Oncoimmunology, 2020, 9(1): 1731943.
|
61. |
Yuan L, Wu X, Zhang L, et al. SFTPA1 is a potential prognostic biomarker correlated with immune cell infiltration and response to immunotherapy in lung adenocarcinoma. Cancer Immunol Immunother, 2022, 71(2): 399-415.
|
62. |
Xia L, Mei J, Kang R, et al. Perioperative ctDNA-based molecular residual disease detection for non-small cell lung cancer: A prospective multicenter cohort study (LUNGCA-1). Clin Cancer Res, 2022, 28(15): 3308-3317.
|
63. |
Luwor RB, Kaye AH, Zhu HJ. Transforming growth factor-beta (TGF-beta) and brain tumours. J Clin Neurosci, 2008, 15(8): 845-855.
|
64. |
Huang AL, Liu SG, Qi WJ, et al. TGF-β1 protein expression in non-small cell lung cancers is correlated with prognosis. Asian Pac J Cancer Prev, 2014, 15(19): 8143-8147.
|
65. |
Deng B, Chen X, Xu L, et al. Chordin-like 1 is a novel prognostic biomarker and correlative with immune cell infiltration in lung adenocarcinoma. Aging (Albany NY), 2022, 14(1): 389-409.
|
66. |
Endl E, Gerdes J. Posttranslational modifications of the KI-67 protein coincide with two major checkpoints during mitosis. J Cell Physiol, 2000, 182(3): 371-380.
|
67. |
尹迎春, 王新美, 李良, 等. 非小细胞肺癌胸腔积液细胞蜡块检测EGFR与K-rasras基因突变和EML4-ALK融合基因及其临床病理特征. 中国胸心血管外科临床杂志, 2015, 22(9): 870-874.
|