1. |
Xia Q, Chen G, Ren Y, et al. Investigating efficacy of "microbiota modulation of the gut-lung axis" combined with chemotherapy in patients with advanced NSCLC: Study protocol for a multicenter, prospective, double blind, placebo controlled, randomized trial. BMC Cancer, 2021, 21(1): 721.
|
2. |
Zhuang H, Cheng L, Wang Y, et al. Dysbiosis of the gut microbiome in lung cancer. Front Cell Infect Microbiol, 2019, 9: 112.
|
3. |
The Lancet. Lung cancer: Some progress, but still a lot more to do. Lancet, 2019, 394(10212): 1880.
|
4. |
Gao S, Li N, Wang S, et al. Lung cancer in People's Republic of China. J Thorac Oncol, 2020, 15(10): 1567-1576.
|
5. |
Thai AA, Solomon BJ, Sequist LV, et al. Lung cancer. Lancet, 2021, 398(10299): 535-554.
|
6. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
7. |
Nicholson AG, Tsao MS, Beasley MB, et al. The 2021 WHO classification of lung tumors: Impact of advances since 2015. J Thorac Oncol, 2022, 17(3): 362-387.
|
8. |
Szalontai K, Gémes N, Furák J, et al. Chronic obstructive pulmonary disease: Epidemiology, biomarkers, and paving the way to lung cancer. J Clin Med, 2021, 10(13): 2889.
|
9. |
Zappa C, Mousa SA. Non-small cell lung cancer: Current treatment and future advances. Transl Lung Cancer Res, 2016, 5(3): 288-300.
|
10. |
Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Glob Health, 2019, 85(1): 8.
|
11. |
Stapelfeld C, Dammann C, Maser E. Sex-specificity in lung cancer risk. Int J Cancer, 2020, 146(9): 2376-2382.
|
12. |
Wang M, Herbst RS, Boshoff C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat Med, 2021, 27(8): 1345-1356.
|
13. |
Kang J, Zhang C, Zhong WZ. Neoadjuvant immunotherapy for non-small cell lung cancer: State of the art. Cancer Commun (Lond), 2021, 41(4): 287-302.
|
14. |
Doroshow DB, Sanmamed MF, Hastings K, et al. Immunotherapy in non-small cell lung cancer: Facts and hopes. Clin Cancer Res, 2019, 25(15): 4592-4602.
|
15. |
Hong T, Wang R, Wang X, et al. Interplay between the intestinal microbiota and acute graft-versus-host disease: Experimental evidence and clinical significance. Front Immunol, 2021, 12: 644982.
|
16. |
Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy. CA Cancer J Clin, 2017, 67(4): 326-344.
|
17. |
Bingula R, Filaire M, Radosevic-Robin N, et al. Desired turbulence? Gut-lung axis, immunity, and lung cancer. J Oncol, 2017, 2017: 5035371.
|
18. |
Kho ZY, Lal SK. The human gut microbiome—A potential controller of wellness and disease. Front Microbiol, 2018, 9: 1835.
|
19. |
Cani PD. Human gut microbiome: Hopes, threats and promises. Gut, 2018, 67(9): 1716-1725.
|
20. |
Zheng Y, Fang Z, Xue Y, et al. Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes, 2020, 11(4): 1030-1042.
|
21. |
Nagasaka M, Sexton R, Alhasan R, et al. Gut microbiome and response to checkpoint inhibitors in non-small cell lung cancer—A review. Crit Rev Oncol Hematol, 2020, 145: 102841.
|
22. |
Lim MY, Hong S, Hwang KH, et al. Diagnostic and prognostic potential of the oral and gut microbiome for lung adenocarcinoma. Clin Transl Med, 2021, 11(9): e508.
|
23. |
Gui QF, Lu HF, Zhang CX, et al. Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet Mol Res, 2015, 14(2): 5642-5651.
|
24. |
Zhang WQ, Zhao SK, Luo JW, et al. Alterations of fecal bacterial communities in patients with lung cancer. Am J Transl Res, 2018, 10(10): 3171-3185.
|
25. |
Heshiki Y, Vazquez-Uribe R, Li J, et al. Predictable modulation of cancer treatment outcomes by the gut microbiota. Microbiome, 2020, 8(1): 28.
|
26. |
Hakozaki T, Richard C, Elkrief A, et al. The gut microbiome associates with immune checkpoint inhibition outcomes in patients with advanced non-small cell lung cancer. Cancer Immunol Res, 2020, 8(10): 1243-1250.
|
27. |
Huang J, Liu D, Wang Y, et al. Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy. Gut, 2022, 71(4): 734-745.
|
28. |
Altorki NK, Markowitz GJ, Gao D, et al. The lung microenvironment: An important regulator of tumour growth and metastasis. Nat Rev Cancer, 2019, 19(1): 9-31.
|
29. |
Yang Q, Ouyang J, Sun F, et al. Short-chain fatty acids: A soldier fighting against inflammation and protecting from tumorigenesis in people with diabetes. Front Immunol, 2020, 11: 590685.
|
30. |
Vernocchi P, Gili T, Conte F, et al. Network analysis of gut microbiome and metabolome to discover microbiota-linked biomarkers in patients affected by non-small cell lung cancer. Int J Mol Sci, 2020, 21(22): 8730.
|
31. |
Xiao X, Cao Y, Chen H. Profiling and characterization of microRNAs responding to sodium butyrate treatment in A549 cells. J Cell Biochem, 2018, 119(4): 3563-3573.
|
32. |
Kim K, Kwon O, Ryu TY, et al. Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer. Mol Med Rep, 2019, 20(2): 1569-1574.
|
33. |
Liu X, Chen B, You W, et al. The membrane bile acid receptor TGR5 drives cell growth and migration via activation of the JAK2/STAT3 signaling pathway in non-small cell lung cancer. Cancer Lett, 2018, 412: 194-207.
|
34. |
Liu CH, Chen Z, Chen K, et al. Lipopolysaccharide-mediated chronic inflammation promotes tobacco carcinogen-induced lung cancer and determines the efficacy of immunotherapy. Cancer Res, 2021, 81(1): 144-157.
|
35. |
Zhao J, Wang X, Mi Z, et al. STAT3/miR-135b/NF-κB axis confers aggressiveness and unfavorable prognosis in non-small-cell lung cancer. Cell Death Dis, 2021, 12(5): 493.
|
36. |
Liu KT, Yeh IJ, Chou SK, et al. Regulatory mechanism of fatty acid-CoA metabolic enzymes under endoplasmic reticulum stress in lung cancer. Oncol Rep, 2018, 40(5): 2674-2682.
|
37. |
Qu Z, Zhang L, Hou R, et al. Exposure to a mixture of cigarette smoke carcinogens disturbs gut microbiota and influences metabolic homeostasis in A/J mice. Chem Biol Interact, 2021, 344: 109496.
|
38. |
Zhao Y, Liu Y, Li S, et al. Role of lung and gut microbiota on lung cancer pathogenesis. J Cancer Res Clin Oncol, 2021, 147(8): 2177-2186.
|
39. |
Ramakrishna C, Kujawski M, Chu H, et al. Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nat Commun, 2019, 10(1): 2153.
|
40. |
Ladinsky MS, Araujo LP, Zhang X, et al. Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science, 2019, 363(6431): eaat4042.
|
41. |
Khosravi N, Caetano MS, Cumpian AM, et al. IL22 promotes kras-mutant lung cancer by induction of a protumor immune response and protection of stemness properties. Cancer Immunol Res, 2018, 6(7): 788-797.
|
42. |
Jin C, Lagoudas GK, Zhao C, et al. Commensal microbiota promote lung cancer development via γδ T cells. Cell, 2019, 176(5): 998-1013.
|
43. |
Thibeault C, Suttorp N, Opitz B. The microbiota in pneumonia: From protection to predisposition. Sci Transl Med, 2021, 13(576): eaba0501.
|
44. |
Wypych TP, Pattaroni C, Perdijk O, et al. Microbial metabolism of L-tyrosine protects against allergic airway inflammation. Nat Immunol, 2021, 22(3): 279-286.
|
45. |
Sarate PJ, Srutkova D, Geissler N, et al. Pre- and neonatal imprinting on immunological homeostasis and epithelial barrier integrity by escherichia coli nissle 1917 prevents allergic poly-sensitization in mice. Front Immunol, 2021, 11: 612775.
|
46. |
Guzior DV, Quinn RA. Review: Microbial transformations of human bile acids. Microbiome, 2021, 9(1): 140.
|
47. |
Dalal N, Jalandra R, Bayal N, et al. Gut microbiota-derived metabolites in CRC progression and causation. J Cancer Res Clin Oncol, 2021, 147(11): 3141-3155.
|
48. |
Wang RP, Wang XH, Li ZM, et al. Changes in serum inflammatory factors, adiponectin, intestinal flora and immunity in patients with non-small cell lung cancer. Eur Rev Med Pharmacol Sci, 2020, 24(20): 10566-10572.
|
49. |
Cvetkovic L, Régis C, Richard C, et al. Physiologic colonic uptake of 18 F-FDG on PET/CT is associated with clinical response and gut microbiome composition in patients with advanced non-small cell lung cancer treated with immune checkpoint inhibitors. Eur J Nucl Med Mol Imaging, 2021, 48(5): 1550-1559.
|
50. |
Shaikh FY, Gills JJ, Sears CL. Impact of the microbiome on checkpoint inhibitor treatment in patients with non-small cell lung cancer and melanoma. EBioMedicine, 2019, 48: 642-647.
|
51. |
Topalian SL, Hodi FS, Brahmer JR, et al. Five-year survival and correlates among patients with advanced melanoma, renal cell carcinoma, or non-small cell lung cancer treated with nivolumab. JAMA Oncol, 2019, 5(10): 1411-1420.
|
52. |
Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med, 2018, 378(24): 2288-2301.
|
53. |
Pakkala S, Ramalingam SS. Personalized therapy for lung cancer: Striking a moving target. JCI Insight, 2018, 3(15): e120858.
|
54. |
Song P, Yang D, Wang H, et al. Relationship between intestinal flora structure and metabolite analysis and immunotherapy efficacy in Chinese NSCLC patients. Thorac Cancer, 2020, 11(6): 1621-1632.
|
55. |
Routy B, Gopalakrishnan V, Daillère R, et al. The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol, 2018, 15(6): 382-396.
|
56. |
Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science, 2015, 350(6264): 1084-1089.
|
57. |
Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science, 2015, 350(6264): 1079-1084.
|
58. |
Gori S, Inno A, Belluomini L, et al. Gut microbiota and cancer: How gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy. Crit Rev Oncol Hematol, 2019, 143: 139-147.
|
59. |
Daillère R, Vétizou M, Waldschmitt N, et al. Enterococcus hirae and barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity, 2016, 45(4): 931-943.
|
60. |
Zhang M, Liu D, Zhou H, et al. Intestinal flora characteristics of advanced non-small cell lung cancer in China and their role in chemotherapy based on metagenomics: A prospective exploratory cohort study. Thorac Cancer, 2021, 12(24): 3293-3303.
|
61. |
Badgeley A, Anwar H, Modi K, et al. Effect of probiotics and gut microbiota on anti-cancer drugs: Mechanistic perspectives. Biochim Biophys Acta Rev Cancer, 2021, 1875(1): 188494.
|
62. |
Qiu Y, Zhang J, Ji R, et al. Preventative effects of selenium-enriched Bifidobacterium longum on irinotecan-induced small intestinal mucositis in mice. Benef Microbes, 2019, 10(5): 569-577.
|
63. |
Hsiao YP, Chen HL, Tsai JN, et al. Administration of lactobacillus reuteri combined with clostridium butyricum attenuates cisplatin-induced renal damage by gut microbiota reconstitution, increasing butyric acid production, and suppressing renal inflammation. Nutrients, 2021, 13(8): 2792.
|
64. |
Yang WC, Hsu FM, Yang PC. Precision radiotherapy for non-small cell lung cancer. J Biomed Sci, 2020, 27(1): 82.
|
65. |
Vinod SK, Hau E. Radiotherapy treatment for lung cancer: Current status and future directions. Respirology, 2020, 25 Suppl 2: 61-71.
|
66. |
Gerassy-Vainberg S, Blatt A, Danin-Poleg Y, et al. Radiation induces proinflammatory dysbiosis: Transmission of inflammatory susceptibility by host cytokine induction. Gut, 2018, 67(1): 97-107.
|
67. |
Sokol H, Adolph TE. The microbiota: An underestimated actor in radiation-induced lesions? Gut, 2018, 67(1): 1-2.
|
68. |
Yang J, Wu Z, Chen Y, et al. Pre-treatment with bifidobacterium infantis and its specific antibodies enhance targeted radiosensitization in a murine model for lung cancer. J Cancer Res Clin Oncol, 2021, 147(2): 411-422.
|
69. |
Nie X, Li L, Yi M, et al. The intestinal microbiota plays as a protective regulator against radiation pneumonitis. Radiat Res, 2020, 194(1): 52-60.
|