1. |
Choudhury D, Tun HW, Wang T, et al. Organ-derived decellularized extracellular matrix: A game changer for bioink manufacturing? Trends Biotechnol, 2018, 36(8): 787-805.
|
2. |
Rock JR, Randell SH, Hogan BL. Airway basal stem cells: A perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech, 2010, 3(9-10): 545-556.
|
3. |
Li N, Guo R, Zhang ZJ. Bioink formulations for bone tissue regeneration. Front Bioeng Biotechnol, 2021, 9: 630488.
|
4. |
Zhang YS, Yue K, Aleman J, et al. 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng, 2017, 45(1): 148-163.
|
5. |
Jungst T, Smolan W, Schacht K, et al. Strategies and molecular design criteria for 3D printable hydrogels. Chem Rev, 2016, 116(3): 1496-539.
|
6. |
Garcia-Cruz MR, Postma A, Frith JE, et al. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Biofabrication, 2021, 13(3).
|
7. |
Mörö A, Samanta S, Honkamäki L, et al. Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation. Biofabrication, 2022, 15(1) .
|
8. |
Shams E, Barzad MS, Mohamadnia S, et al. A review on alginate-based bioinks, combination with other natural biomaterials and characteristics. J Biomater Appl, 2022, 37(2): 355-372.
|
9. |
Blaeser A, Duarte Campos DF, Puster U, et al. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater, 2016, 5(3): 326-333.
|
10. |
Liu W, Heinrich MA, Zhou Y, et al. Extrusion boprinting of shear-thinning gelatin methacryloyl bioinks. Adv Healthc Mater, 2017, 6(12): 10.1002/adhm. 201601451.
|
11. |
Poldervaart MT, Goversen B, de Ruijter M, et al. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. PLoS One, 2017, 12(6): e0177628.
|
12. |
Gomez-Florit M, Pardo A, Domingues RMA, et al. Natural-based hydrogels for tissue engineering applications. Molecules, 2020, 25(24): 5858.
|
13. |
Decante G, Costa JB, Silva-Correia J, et al. Engineering bioinks for 3D bioprinting. Biofabrication, 2021, 13(3).
|
14. |
Heinrich MA, Liu W, Jimenez A, et al. 3D Bioprinting: From benches to translational applications. Small, 2019, 15(23): e1805510.
|
15. |
Wang Z, Zhang Y, Yin Y, et al. High-strength and injectable supramolecular ion wound hhydrogel self-assembled by monomeric nucleoside for tooth-extractealing. Adv Mater, 2022, 34(13): e2108300.
|
16. |
Cha GD, Lee WH, Sunwoo SH, et al. Multifunctional injectable hydrogel for in vivo diagnostic and therapeutic applications. ACS Nano, 2022, 16(1): 554-556.
|
17. |
Freeman S, Calabro S, Williams R, et al. Bioink formulation and machine learning-empowered bioprinting optimization. Front Bioeng Biotechnol, 2022,10: 913579.
|
18. |
Shin M, Galarraga JH, Kwon MY, et al. Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior. Acta Biomater, 2019, 95: 165-175.
|
19. |
Gungor-Ozkerim PS, Inci I, Zhang YS, et al. Bioinks for 3D bioprinting: An overview. Biomater Sci, 2018, 6(5): 915-946.
|
20. |
Moeinzadeh S, Park Y, Lin S, et al. In-situ stable injectable collagen-based hydrogels for cell and growth factor delivery. Materialia (Oxf), 2021,15: 100954.
|
21. |
Stratesteffen H, Köpf M, Kreimendahl F, et al. GelMA-collagen blends enable drop-on-demand 3D printablility and promote angiogenesis. Biofabrication, 2017, 9(4): 045002.
|
22. |
Leucht A, Volz AC, Rogal J, et al. Advanced gelatin-based vascularization bioinks for extrusion-based bioprinting of vascularized bone equivalents. Sci Rep, 2020, 10(1): 5330.
|
23. |
McBeth C, Lauer J, Ottersbach M, et al. 3D bioprinting of GelMA scaffolds triggers mineral deposition by primary human osteoblasts. Biofabrication, 2017, 9(1): 015009.
|
24. |
Behan K, Dufour A, Garcia O, et al. Methacrylated cartilage ECM-based hydrogels as injectables and bioinks for cartilage tissue engineering. Biomolecules, 2022, 12(2): 216.
|
25. |
Kim BS, Kim H, Gao G, et al. Decellularized extracellular matrix: A step towards the next generation source for bioink manufacturing. Biofabrication, 2017, 9(3): 034104.
|
26. |
De Santis MM, Alsafadi HN, Tas S, et al. Extracellular-matrix-reinforced bioinks for 3D bioprinting human tissue. Adv Mater, 2021, 33(3): e2005476.
|
27. |
Chimene D, Kaunas R, Gaharwar AK. Hydrogel bioink reinforcement for additive manufacturing: A focused review of emerging strategies. Adv Mater, 2020, 32(1): e1902026.
|
28. |
Dubbin K, Tabet A, Heilshorn SC. Quantitative criteria to benchmark new and existing bio-inks for cell compatibility. Biofabrication, 2017, 9(4): 044102.
|
29. |
Abdulghani S, Morouço PG. Biofabrication for osteochondral tissue regeneration: Bioink printability requirements. J Mater Sci Mater Med, 2019, 30(2): 20.
|
30. |
Matai I, Kaur G, Seyedsalehi A, et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 2020, 226: 119536.
|
31. |
Panda S, Hajra S, Mistewicz K, et al. A focused review on three-dimensional bioprinting technology for artificial organ fabrication. Biomater Sci, 2022, 10(18): 5054-5080.
|
32. |
Boscher J, Gachet C, Lanza F, et al. Megakaryocyte culture in 3D methylcellulose-based hydrogel to improve cell maturation and study the impact of stiffness and confinement. J Vis Exp, 2021, 174.
|
33. |
Jiang J, Woulfe DS, Papoutsakis ET. Shear enhances thrombopoiesis and formation of microparticles that induce megakaryocytic differentiation of stem cells. Blood, 2014, 124(13): 2094-2103.
|
34. |
Duarte Campos DF, Blaeser A, Weber M, et al. Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid. Biofabrication, 2013, 5(1): 015003.
|
35. |
Duraj-Thatte AM, Manjula-Basavanna A, Rutledge J, et al. Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers. Nat Commun, 2021, 12(1): 6600.
|
36. |
Duraj-Thatte AM, Courchesne ND, Praveschotinunt P, et al. Genetically programmable self-regenerating bacterial hydrogels. Adv Mater, 2019, 31(40): e1901826.
|
37. |
Yan Z, Yin M, Chen J, et al. Assembly and substrate recognition of curli biogenesis system. Nat Commun, 2020, 11(1): 241.
|
38. |
Zandi N, Sani ES, Mostafavi E, et al. Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications. Biomaterials, 2021, 267: 120476.
|
39. |
Nojoomi A, Tamjid E, Simchi A, et al. Injectable polyethylene glycol-laponite composite hydrogels as articular cartilage scaffolds with superior mechanical and rheological properties. Intern J Polym Mater Polym Biomater, 2017, 66(3): 105-114.
|
40. |
Ding X, Gao J, Awada H, et al. Dual physical dynamic bond-based injectable and biodegradable hydrogel for tissue regeneration. J Mater Chem B, 2016, 4(6): 1175-1185.
|
41. |
Ren X, Zhou Q, Foulad D, et al. Nanoparticulate mineralized collagen glycosaminoglycan materials directly and indirectly inhibit osteoclastogenesis and osteoclast activation. J Tissue Eng Regen Med, 2019, 13(5): 823-834.
|
42. |
Barisón MJ, Nogoceke R, Josino R, et al. Functionalized hydrogels for cartilage repair: The value of secretome-instructive signaling. Int J Mol Sci, 2022, 23(11): 6010.
|
43. |
Im S, Choe G, Seok JM, et al. An osteogenic bioink composed of alginate, cellulose nanofibrils, and polydopamine nanoparticles for 3D bioprinting and bone tissue engineering. Int J Biol Macromol, 2022, 205: 520-529.
|
44. |
Markstedt K, Mantas A, Tournier I, et al. 3D Bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules, 2015, 16(5): 1489-1496.
|
45. |
Chen Y, Xiong X, Liu X, et al. 3D Bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/alginate and thixotropic magnesium phosphate-based gels. J Mater Chem B, 2020, 8(25): 5500-5514.
|
46. |
Campiglio CE, Villonio M, Dellacà RL, et al. An injectable, degradable hydrogel plug for tracheal occlusion in congenital diaphragmatic hernia (CDH). Mater Sci Eng C Mater Biol Appl, 2019, 99: 430-439.
|
47. |
Perrone EE, Deprest JA. Fetal endoscopic tracheal occlusion for congenital diaphragmatic hernia: A narrative review of the history, current practice, and future directions. Transl Pediatr, 2021, 10(5): 1448-1460.
|