1. |
Listed NA. Proceedings of the First International Conference on Thymic Malignancies. August 20-21, 2009. Bethesda, Maryland, USA. J Thorac Oncol, 2010, 5(4): 259-370.
|
2. |
Kondo K, Monden Y. Therapy for thymic epithelial tumors: A clinical study of 1 320 patients from Japan. Ann Thorac Surg, 2003, 76(3): 878-884.
|
3. |
Eng TY, Fuller CD, Jagirdar J, et al. Thymic carcinoma: State of the art review. Int J Radiat Oncol Biol Phys, 2004, 59(3): 654-664.
|
4. |
Ettinger DS, Riely GJ, Akerley W, et al. Thymomas and thymic carcinomas: Clinical practice guidelines in oncology. J Natl Compr Canc Netw, 2013, 11(5): 562-576.
|
5. |
Marx A, Rieker R, Toker A, et al. Thymic carcinoma: Is it a separate entity? From molecular to clinical evidence. Thorac Surg Clin, 2011, 21(1): 25-31.
|
6. |
Policies and reporting guidelines for small biopsy specimens of mediastinal masses. J Thorac Oncol, 2011, 6(7 Suppl 3): S1724-9.
|
7. |
Ströbel P, Hohenberger P, Marx A. Thymoma and thymic carcinoma: molecular pathology and targeted therapy. J Thorac Oncol, 2010, 5(10 Suppl 4): S286-290.
|
8. |
Moran CA, Suster S. Thymic carcinoma: Current concepts and histologic features. Hematol Oncol Clin North Am, 2008, 22(3): 393-407.
|
9. |
Jovanovic D, Markovic J, Ceriman V, et al. Correlation of genomic alterations and PD-L1 expression in thymoma. J Thorac Dis, 2020, 12(12): 7561-7570.
|
10. |
He Y, Ramesh A, Gusev Y, et al. Molecular predictors of response to pembrolizumab in thymic carcinoma. Cell Rep Med, 2021, 2(9): 100392.
|
11. |
Shimada M, Taniguchi H, Yamaguchi H, et al. Genetic profile of thymic epithelial tumors in the Japanese population: An exploratory study examining potential therapeutic targets. Transl Lung Cancer Res, 2023, 12(4): 707-718.
|
12. |
Szpechcinski A, Szolkowska M, Winiarski S, et al. Targeted next-generation sequencing of thymic epithelial tumours revealed pathogenic variants in KIT, ERBB2, KRAS, and TP53 in 30% of thymic carcinomas. Cancers (Basel), 2022, 14(14): 3388.
|
13. |
Tsukaguchi A, Ihara S, Yasuoka H, et al. Lenvatinib-refractory thymic mucinous carcinoma with PIK3CA mutation; proceedings of the International Cancer Conference Journal, 2023. Springer.
|
14. |
Chen S, Zhou Y, Chen Y, et al. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34(17): i884-i890.
|
15. |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760.
|
16. |
Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25(16): 2078-2079.
|
17. |
Karczewski KJ, Weisburd B, Thomas B, et al. The ExAC browser: Displaying reference data information from over 60 000 exomes. Nucleic Acids Res, 2017, 45(D1): D840-D845.
|
18. |
Gudmundsson S, Singer-Berk M, Watts NA, et al. Variant interpretation using population databases: Lessons from gnomAD. Hum Mutat, 2022, 43(8): 1012-1030.
|
19. |
Mayakonda A, Lin DC, Assenov Y, et al. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res, 2018, 28(11): 1747-1756.
|
20. |
Analysis of 100, 000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med, 2017, 9(1): 1-14.
|
21. |
Niu B, Ye K, Zhang Q, et al. MSIsensor: Microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics, 2014, 30(7): 1015-1016.
|
22. |
Mroz EA, Tward AD, Hammon RJ, et al. Intra-tumor genetic heterogeneity and mortality in head and neck cancer: Analysis of data from the Cancer Genome Atlas. PLoS Med, 2015, 12(2): e1001786.
|
23. |
Szolek A, Schubert B, Mohr C, et al. OptiType: Precision HLA typing from next-generation sequencing data. Bioinformatics, 2014, 30(23): 3310-3316.
|
24. |
Feng K, Liu Y, Zhao Y, et al. Efficacy and biomarker analysis of nivolumab plus gemcitabine and cisplatin in patients with unresectable or metastatic biliary tract cancers: Results from a phaseⅡstudy. J Immunother Cancer, 2020, 8(1): e000367.
|
25. |
Favero F, Joshi T, Marquard AM, et al. Sequenza: Allele-specific copy number and mutation profiles from tumor sequencing data. Ann Oncol, 2015, 26(1): 64-70.
|
26. |
Yu G, Wang LG, Han Y, et al. ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5): 284-287.
|
27. |
Xu S, Li X, Zhang H, et al. Frequent genetic alterations and their clinical significance in patients with thymic epithelial tumors. Front Oncol, 2021, 11: 667148.
|
28. |
Roden AC. Molecular changes are infrequent in thymic carcinomas but might represent targetable mutations. Mediastinum, 2017, 1: 23.
|
29. |
Hackman P, Vihola A, Haravuori H, et al. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am J Hum Genet, 2002, 71(3): 492-500.
|
30. |
Han X, Chen J, Wang J, et al. TTN mutations predict a poor prognosis in patients with thyroid cancer. Biosci Rep, 2022, 42(7): BSR20221168.
|
31. |
Zheng QX, Wang J, Gu XY, et al. TTN-AS1 as a potential diagnostic and prognostic biomarker for multiple cancers. Biomed Pharmacother, 2021, 135: 111169.
|
32. |
Fang X, Zhong C, Weng S, et al. Sintilimab plus bevacizumab and CapeOx (BBCAPX) on first-line treatment in patients with RAS mutant, microsatellite stable, metastatic colorectal cancer: Study protocol of a randomized, open-label, multicentric study. BMC Cancer, 2023, 23(1): 676.
|
33. |
Liu Z, Wang L, Guo C, et al. TTN/OBSCN 'Double-Hit' predicts favourable prognosis, 'immune-hot' subtype and potentially better immunotherapeutic efficacy in colorectal cancer. J Cell Mol Med, 2021, 25(7): 3239-3251.
|
34. |
Radovich M, Pickering CR, Felau I, et al. The integrated genomic landscape of thymic epithelial tumors. Cancer Cell, 2018, 33(2): 244-258.
|
35. |
Du H, Xie S, Guo W, et al. The prognostic value of tumor mutation burden and immune cell infiltration in thymic epithelial tumors. Ann Clin Lab Sci, 2021, 51(1): 44-54.
|
36. |
Prays J, Ortiz-Villalón C. Molecular landscape of thymic epithelial tumors. Semin Diagn Pathol, 2022, 39(2): 131-136.
|
37. |
Yang W, Chen S, Cheng X, et al. Characteristics of genomic mutations and signaling pathway alterations in thymic epithelial tumors. Ann Transl Med, 2021, 9(22): 1659.
|
38. |
Wang F, Wei XL, Wang FH, et al. Safety, efficacy and tumor mutational burden as a biomarker of overall survival benefit in chemo-refractory gastric cancer treated with toripalimab, a PD-1 antibody in phase Ⅰb/Ⅱ clinical trial NCT02915432. Ann Oncol, 2019, 30(9): 1479-1486.
|
39. |
Klempner SJ, Fabrizio D, Bane S, et al. Tumor mutational burden as a predictive biomarker for response to immune checkpoint inhibitors: A review of current evidence. Oncologist, 2020, 25(1): e147-e159.
|
40. |
Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med, 2017, 377(25): 2500-2501.
|
41. |
Trabucco SE, Gowen K, Maund SL, et al. A novel next-generation sequencing approach to detecting microsatellite instability and pan-tumor characterization of 1000 microsatellite instability-high cases in 67, 000 patient samples. J Mol Diagn, 2019, 21(6): 1053-1066.
|
42. |
Repetto M, Conforti F, Pirola S, et al. Thymic carcinoma with lynch syndrome or microsatellite instability, a rare entity responsive to immunotherapy. Eur J Cancer, 2021, 153: 162-167.
|
43. |
Mroz EA, Rocco JW. Intra-tumor heterogeneity in head and neck cancer and its clinical implications. World J Otorhinolaryngol Head Neck Surg, 2016, 2(2): 60-67.
|
44. |
McDonald KA, Kawaguchi T, Qi Q, et al. Tumor heterogeneity correlates with less immune response and worse survival in breast cancer patients. Ann Surg Oncol, 2019, 26(7): 2191-2199.
|
45. |
Nguyen L, WM Martens J, Van Hoeck A, et al. Pan-cancer landscape of homologous recombination deficiency. Nat Commun, 2020, 11(1): 5584.
|
46. |
Kim H, Ahn S, Kim H, et al. The prevalence of homologous recombination deficiency (HRD) in various solid tumors and the role of HRD as a single biomarker to immune checkpoint inhibitors. J Cancer Res Clin Oncol, 2022, 148(9): 2427-2435.
|
47. |
Rempel E, Kluck K, Beck S, et al. Pan-cancer analysis of genomic scar patterns caused by homologous repair deficiency (HRD). NPJ Precis Oncol, 2022, 6(1): 36.
|