1. |
Chan HCS, Shan H, Dahoun T, et al. Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci, 2019, 40(8): 592-604.
|
2. |
Lipkova J, Chen RJ, Chen B, et al. Artificial intelligence for multimodal data integration in oncology. Cancer Cell, 2022, 40(10): 1095-1110.
|
3. |
Björnsson B, Borrebaeck C, Elander N, et al. Digital twins to personalize medicine. Genome Med, 2019, 12(1): 4.
|
4. |
Wang H, Fu T, Du Y, et al. Scientific discovery in the age of artificial intelligence. Nature, 2023, 620(7972): 47-60.
|
5. |
Krishnan R, Rajpurkar P, Topol EJ. Self-supervised learning in medicine and healthcare. Nat Biomed Eng, 2022, 6(12): 1346-1352.
|
6. |
Townshend RJL, Eismann S, Watkins AM, et al. Geometric deep learning of RNA structure. Science, 2021, 373(6558): 1047-1051.
|
7. |
Ghahramani Z. Probabilistic machine learning and artificial intelligence. Nature, 2015, 521(7553): 452-459.
|
8. |
Goenka SD, Gorzynski JE, Shafin K, et al. Accelerated identification of disease-causing variants with ultra-rapid nanopore genome sequencing. Nat Biotechnol, 2022, 40(7): 1035-1041.
|
9. |
Qiao Z, Christensen AS, Welborn M, et al. Informing geometric deep learning with electronic interactions to accelerate quantum chemistry. Proc Natl Acad Sci USA, 2022, 119(31): e2205221119.
|
10. |
Gao W, Coley CW. The synthesizability of molecules proposed by generative models. J Chem Inf Model, 2020, 60(12): 5714-5723.
|
11. |
王飞跃, 缪青海. 人工智能驱动的科学研究新范式:从AI4S 到智能科学. 中国科学院院刊 , 2023, 38(4): 536-540.Wang FY, Miao QH. Novel paradigm for AI-driven scientific research: From AI4S to intelligent science. Bull Chie Acad Sci (Chinese Version), 2023, 38(4): 536-540.
|
12. |
Wu T, He S, Liu J, et al. A brief overview of ChatGPT: The history, status quo and potential future development. IEEE/CAA J Automatica Sinica, 2023, 10(5): 1122-1136.
|
13. |
Alaparthi S, Mishra M. Bidirectional Encoder Representations from Transformers (BERT): A sentiment analysis odyssey. J Market Anal, 2021, 9: 118-126.
|
14. |
Chen X, Jia S, Xiang Y. A review: Knowledge reasoning over knowledge graph. Expert Syst Appl, 2020, 141: 112948.
|
15. |
Stevens R, Goble CA, Bechhofer S. Ontology-based knowledge representation for bioinformatics. Brief Bioinform, 2000, 1(4): 398-414.
|
16. |
Getoor L, Friedman N, Koller D, et al. Learning probabilistic relational models. In: Džeroski S, Lavrač N. (eds) Relational Data Mining. Berlin: Springer, 2001: 307-335.
|
17. |
Jordan MI. Graphical models. Stat Sci, 2004, 19(1): 140-155.
|
18. |
Kirketerp-Møller K, Stewart PS, Bjarnsholt T. The zone model: A conceptual model for understanding the microenvironment of chronic wound infection. Wound Repair Regen, 2020, 28(5): 593-599.
|
19. |
Salehinejad H, Sankar S, Barfett J, et al. Recent advances in recurrent neural networks. arXiv preprint arXiv. 2017: 180101078 .
|
20. |
Han K, Xiao A, Wu E, et al. Transformer in transformer. In: Ranzato M, Beygelzimer A, Dauphin Y, et al. (eds) Advances in Neural Information Processing Systems. San Diego: Curran Associates, 2021: 15908-15919.
|
21. |
Pearl J. Causal inference in statistics: An overview. Stat Surv, 2009, 3: 96-146.
|
22. |
Lipovetsky S. Emotion regulation ability and resilience in a sample of adolescents from a suburban area. Technometrics, 2022, 64(3): 423-424.
|
23. |
Tchagna Kouanou A, Mih Attia T, Feudjio C, et al. An overview of supervised machine learning methods and data analysis for COVID-19 detection. J Healthc Eng, 2021, 22(2021): 4733167.
|
24. |
Atasever S, Azginoglu N, Terzi DS, et al. A comprehensive survey of deep learning research on medical image analysis with focus on transfer learning. Clin Imaging, 2023, 94: 18-41.
|
25. |
Cord M, Cunningham P, Delany SJ. (eds) Machine Learning Techniques for Multimedia: Case Studies on Organization and Retrieval. Berlin: Springer, 2008: 21-49.
|
26. |
Hastie T, Tibshirani R, Friedman J, et al. Chief Editors. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Berlin: Springer, 2009: 485-585.
|
27. |
Reddy Y, Viswanath P, Reddy BE. Semi-supervised learning: A brief review. Int J Eng Technol, 2018, 7(1-8): 81-85.
|
28. |
Liu X, Zhang F, Hou Z, et al. Self-supervised learning: Generative or contrastive. IEEE transactions on knowledge and data engineering, 2021, 35(1): 857-876.
|
29. |
Pan SJ, Yang Q. A survey on transfer learning. IEEE transactions on knowledge and data engineering, 2009, 22(10): 1345-1359.
|
30. |
Haug CJ, Drazen JM. Artificial intelligence and machine learning in clinical medicine, 2023. N Engl J Med, 2023, 388(13): 1201-1208.
|
31. |
You Y, Lai X, Pan Y, et al. Artificial intelligence in cancer target identification and drug discovery. Signal Transduct Target Ther, 2022, 7(1): 156-179.
|
32. |
Ji X, Tan W, Zhang C, et al. TWIRLS, a knowledge-mining technology, suggests a possible mechanism for the pathological changes in the human host after coronavirus infection via ACE2. Drug Dev Res, 2020, 81(8): 1004-1018.
|
33. |
Bera K, Braman N, Gupta A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol, 2022, 19(2): 132-146.
|
34. |
Masison J, Beezley J, Mei Y, et al. A modular computational framework for medical digital twins. Proc Natl Acad Sci USA, 2021, 118(20): e2024287118.
|
35. |
Katsoulakis E, Wang Q, Wu H, et al. Digital twins for health: A scoping review. NPJ Digit Med, 2024, 7(1): 77-87.
|
36. |
Finn RS, Martin M, Rugo HS, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med, 2016, 375(20): 1925-1936.
|
37. |
Liao L, Deng L, Zhang YL, et al. C9orf142 transcriptionally activates MTBP to drive progression and resistance to CDK4/6 inhibitor in triple-negative breast cancer. Clin Transl Med, 2023, 13(11): e1480.
|
38. |
Yang M, Fan Y, Wu ZY, et al. DAGM: A novel modelling framework to assess the risk of HER2-negative breast cancer based on germline rare coding mutations. EBioMedicine, 2021, 69: 103446.
|
39. |
Kuenzi BM, Park J, Fong SH, et al. Predicting drug response and synergy using a deep learning model of human cancer cells. Cancer Cell, 2020, 38(5): 672-684.
|
40. |
Sips FLP, Pappalardo F, Russo G, et al. In silico clinical trials for relapsing-remitting multiple sclerosis with MS TreatSim. BMC Med Inform Decis Mak, 2022, 22(Suppl 6): 294.
|
41. |
Gutiérrez-Casares JR, Quintero J, Jorba G, et al. Methods to develop an in silico clinical trial: Computational head-to-head comparison of lisdexamfetamine and methylphenidate. Front Psychiatry, 2021, 12: 741170.
|
42. |
Kolla L, Gruber FK, Khalid O, et al. The case for AI-driven cancer clinical trials—The efficacy arm in silico. Biochim Biophys Acta Rev Cancer, 2021, 1876(1): 188572.
|
43. |
Arulraj T, Wang H, Emens LA, et al. A transcriptome-informed QSP model of metastatic triple-negative breast cancer identifies predictive biomarkers for PD-1 inhibition. Sci Adv, 2023, 9(26): eadg0289.
|
44. |
Susilo ME, Li CC, Gadkar K, et al. Systems-based digital twins to help characterize clinical dose-response and propose predictive biomarkers in a phaseⅠstudy of bispecific antibody, mosunetuzumab, in NHL. Clin Transl Sci, 2023, 16(7): 1134-1148.
|
45. |
Wang H, Arulraj T, Kimko H, et al. Generating immunogenomic data-guided virtual patients using a QSP model to predict response of advanced NSCLC to PD-L1 inhibition. NPJ Precis Oncol, 2023, 7(1): 55-68.
|
46. |
Milberg O, Gong C, Jafarnejad M, et al. A QSP model for predicting clinical responses to monotherapy, combination and sequential therapy following CTLA-4, PD-1, and PD-L1 Checkpoint Blockade. Sci Rep, 2019, 9(1): 11286.
|
47. |
Anbari S, Wang H, Zhang Y, et al. Using quantitative systems pharmacology modeling to optimize combination therapy of anti-PD-L1 checkpoint inhibitor and T cell engager. Front Pharmacol, 2023, 14: 1163432.
|
48. |
Zhang S, Deshpande A, Verma BK, et al. Informing virtual clinical trials of hepatocellular carcinoma with spatial multi-omics analysis of a human neoadjuvant immunotherapy clinical trial. BioRxiv, 2023: 2023.08. 11.553000.
|
49. |
Sammut SJ, Crispin-Ortuzar M, Chin SF, et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature, 2022, 601(7894): 623-629.
|