1. |
Domper Arnal MJ, Ferrández Arenas Á, Lanas Arbeloa Á. Esophageal cancer: Risk factors, screening and endoscopic treatment in Western and Eastern countries. World J Gastroenterol, 2015, 21(26): 7933-7943.
|
2. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
3. |
Xiao J, Cheng L, Fang T, et al. Nanoparticle-embedded electrospun fiber-covered stent to assist intraluminal photodynamic treatment of oesophageal cancer. Small, 2019, 15(49): e1904979.
|
4. |
Bhatt A, Kamath S, Murthy SC, et al. Multidisciplinary evaluation and management of early stage esophageal cancer. Surg Oncol Clin N Am, 2020, 29(4): 613-630.
|
5. |
Garg PK, Sharma J, Jakhetiya A, et al. Preoperative therapy in locally advanced esophageal cancer. World J Gastroenterol, 2016, 22(39): 8750-8759.
|
6. |
Zhang Y, Zhang Y, Peng L, et al. Research progress on the predicting factors and coping strategies for postoperative recurrence of esophageal cancer. Cells, 2022, 12(1): 114.
|
7. |
徐寅生, 任翔宇, 余梦真, 等. 基于纳米技术的药物递送策略及其在癌症治疗中的应用. 科学通报, 2023, 68(32): 4346-4372.Xu YS, Ren XY, Yu MZ, et al. Nanotechnology-based drug delivery strategy and its application in cancer therapy. Chin Sci Bull, 2023, 68(32): 4346-4372.
|
8. |
张新雨, 冯亚婵, 张皓杰, 等. 纳米载药体系在肿瘤耐药治疗中的应用研究进展. 河北科技大学学报, 2022, 43(4): 417-425.Zhang XY, Feng YC, Zhang HJ, et al. Research progress on the application of nano-drug delivery system in tumor drug resistance therapy. J Hebei Univ Sci Tec, 2022, 43(4): 417-425.
|
9. |
Duan X, Yu Z. Neoadjuvant chemoradiotherapy combined with operation vs. operation alone for resectable esophageal cancer: Meta-analysis on randomized controlled trials. Zhonghua Wei Chang Wai Ke Za Zhi, 2017, 20(7): 809-815.
|
10. |
杜益群, 张东生, 倪海燕, 等. 肿瘤热疗用Fe3O4磁性纳米粒子的生物相容性研究. 南京大学学报(自然科学版), 2006(3): 324-330.Du YQ, Zhang DS, Ni HY, et al. Biocompatibility of Fe3O4 magnetic nanoparticles for tumor hyperthermia. J Nanjing Univ (Natural Science Edition), 2006(3): 324-330.
|
11. |
Golombek SK, May JN, Theek B, et al. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev, 2018, 130: 17-38.
|
12. |
Shi Y, van der Meel R, Chen X, et al. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics, 2020, 10(17): 7921-7924.
|
13. |
Gao L, Fan K, Yan X. Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications. Theranostics, 2017, 7(13): 3207-3227.
|
14. |
Nguyen MD, Tran HV, Xu S, et al. Fe3O4 nanoparticles: Structures, synthesis, magnetic properties, surface functionalization, and emerging applications. Appl Sci (Basel), 2021, 11(23): 11301.
|
15. |
Yang D, Chen Q, Zhang M, et al. PLGA+Fe3O4+PFP nanoparticles drug-delivery demonstrates potential anti-tumor effects on tumor cells. Ann Transplant, 2022 Feb 11: 27: e933246.
|
16. |
Parveen S, Misra R, Sahoo SK. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine, 2012, 8(2): 147-166.
|
17. |
Hilger I, Kaiser WA. Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine (Lond), 2012, 7(9): 1443-1459.
|
18. |
Laurent S, Saei AA, Behzadi S, et al. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: Opportunities and challenges. Expert Opin Drug Deliv, 2014, 11(9): 1449-1470.
|
19. |
Suk JS, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev, 2016, 99(Pt A): 28-51.
|
20. |
Ding Y, Shen SZ, Sun H, et al. Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery. Mater Sci Eng C Mater Biol Appl, 2015, 48: 487-498.
|
21. |
Zhang T, Wang L, He X, et al. Cytocompatibility of pH-sensitive, chitosan-coated Fe3O4 nanoparticles in gynecological cells. Front Med (Lausanne), 2022, 9: 799145.
|
22. |
Yuan G, Yuan Y, Xu K, et al. Biocompatible PEGylated Fe3O4 nanoparticles as photothermal agents for near-infrared light modulated cancer therapy. Int J Mol Sci, 2014, 15(10): 18776-18788.
|
23. |
邱虎, 洪坤巧, 罗曼, 等. 纳米颗粒在晚期食管癌治疗中的研究进展. 胃肠病学和肝病学杂志, 2021, 30(8): 935-939.Qiu H, Hong KQ, Luo M, et al. Research progress of nanoparticles in the treatment of advanced esophageal cancer. J Gastr Hepat, 2021, 30(8): 935-939.
|
24. |
Fons P, Gueguen-Dorbes G, Herault JP, et al. Tumor vasculature is regulated by FGF/FGFR signaling-mediated angiogenesis and bone marrow-derived cell recruitment: This mechanism is inhibited by SSR128129E, the first allosteric antagonist of FGFRs. J Cell Physiol, 2015, 230(1): 43-51.
|
25. |
Takahashi O, Komaki R, Smith PD, et al. Combined MEK and VEGFR inhibition in orthotopic human lung cancer models results in enhanced inhibition of tumor angiogenesis, growth, and metastasis. Clin Cancer Res, 2012, 18(6): 1641-1654.
|
26. |
Gai J, Gao Z, Song L, et al. Contrast-enhanced computed tomography combined with Chitosan-Fe3O4 nanoparticles targeting fibroblast growth factor receptor and vascular endothelial growth factor receptor in the screening of early esophageal cancer. Exp Ther Med, 2018, 15(6): 5344-5352.
|
27. |
Karamipour Sh, Sadjadi MS, Farhadyar N. Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core-shell for targeted drug delivery application. Spectrochim Acta A Mol Biomol Spectrosc, 2015, 148: 146-155.
|
28. |
卢琳, 熊素彬. EPR效应在实体瘤靶向治疗中的研究进展. 北方药学, 2014, 11(7): 73.Lu L, Xiong SB. Research progress of EPR effect in targeted therapy of solid tumors. North Pharm, 2014, 11(7): 73.
|
29. |
Subhan MA, Parveen F, Filipczak N, et al. Approaches to improve EPR-based drug delivery for cancer therapy and diagnosis. J Pers Med, 2023, 13(3): 389.
|
30. |
Barenholz Y. Doxil®--the first FDA-approved nano-drug: Lessons learned. J Control Release, 2012, 160(2): 117-134.
|
31. |
Leporatti S. Thinking about enhanced permeability and retention effect (EPR). J Pers Med, 2022, 12(8): 1259.
|
32. |
Tietze R, Zaloga J, Unterweger H, et al. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun, 2015, 468(3): 463-470.
|
33. |
Guo X, Li W, Luo L, et al. External magnetic field-enhanced chemo-photothermal combination tumor therapy via iron oxide nanoparticles. ACS Appl Mater Interfaces, 2017, 9(19): 16581-16593.
|
34. |
Chen Y, Li H, Deng Y, et al. Near-infrared light triggered drug delivery system for higher efficacy of combined chemo-photothermal treatment. Acta Biomater, 2017, 51: 374-392.
|
35. |
Wu L, Chen L, Liu F, et al. Remotely controlled drug release based on iron oxide nanoparticles for specific therapy of cancer. Colloids Surf B Biointerfaces, 2017, 152: 440-448.
|
36. |
Aliabadi M, Shagholani H, Yunessnia Lehi A. Synthesis of a novel biocompatible nanocomposite of graphene oxide and magnetic nanoparticles for drug delivery. Int J Biol Macromol, 2017, 98: 287-291.
|
37. |
Sohail A, Ahmad Z, Bég OA, et al. A review on hyperthermia via nanoparticle-mediated therapy. Bull Cancer, 2017, 104(5): 452-461.
|
38. |
Estelrich J, Busquets MA. Iron oxide nanoparticles in photothermal therapy. Molecules, 2018, 23(7): 1567.
|
39. |
王煦漫, 古宏晨, 杨正强, 等. 磁热疗用Fe3O4在交变磁场中的热效应. 上海交通大学学报, 2005(2): 275-278.Wang XM, Gu HC, Yang ZQ, et al. Thermal effect of Fe3O4 in alternating magnetic field for magnetic hyperthermia. J Shanghai Jiaotong Univ, 2005(2): 275-278.
|
40. |
Chu M, Shao Y, Peng J, et al. Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials, 2013, 34(16): 4078-4088.
|
41. |
Huang Y, Hsu JC, Koo H, et al. Repurposing ferumoxytol: Diagnostic and therapeutic applications of an FDA-approved nanoparticle. Theranostics, 2022, 12(2): 796-816.
|
42. |
卢启正, 郑浩, 沈运丽. 磁性氧化铁纳米颗粒的心血管安全性研究进展. 临床心血管病杂志, 2022, 38(3): 176-180.Lu QZ, Zheng H, Shen YL. Advances in cardiovascular safety of magnetic iron oxide nanoparticles. J Clin Cardiol, 2022, 38(3): 176-180.
|
43. |
Malhotra N, Lee JS, Liman RAD, et al. Potential toxicity of iron oxide magnetic nanoparticles: A review. Molecules, 2020, 25(14): 3159.
|
44. |
Katsnelson BA, Degtyareva TD, Minigalieva II, et al. Subchronic systemic toxicity and bioaccumulation of Fe3O4 nano- and microparticles following repeated intraperitoneal administration to rats. Int J Toxicol, 2011, 30(1): 59-68.
|
45. |
Yang L, Kuang H, Zhang W, et al. Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice. Nanoscale, 2015, 7(2): 625-636.
|
46. |
Yang P, Xu H, Zhang Z, et al. Surface modification affect the biodistribution and toxicity characteristics of iron oxide magnetic nanoparticles in rats. IET Nanobiotechnol, 2018, 12(5): 562-568.
|
47. |
Arami H, Krishnan KM. Intracellular performance of tailored nanoparticle tracers in magnetic particle imaging. J Appl Phys, 2014, 115(17): 17B306.
|
48. |
Nowak-Jary J, Machnicka B. In vivo biodistribution and clearance of magnetic iron oxide nanoparticles for medical applications. Int J Nanomedicine, 2023, 18: 4067-4100.
|
49. |
Ghosh SC, Neslihan Alpay S, Klostergaard J. CD44: A validated target for improved delivery of cancer therapeutics. Expert Opin Ther Targets, 2012, 16(7): 635-650.
|
50. |
Mattheolabakis G, Milane L, Singh A, et al. Hyaluronic acid targeting of CD44 for cancer therapy: From receptor biology to nanomedicine. J Drug Target, 2015, 23(7-8): 605-618.
|
51. |
Skandalis SS, Gialeli C, Theocharis AD, et al. Advances and advantages of nanomedicine in the pharmacological targeting of hyaluronan-CD44 interactions and signaling in cancer. Adv Cancer Res, 2014, 123: 277-317.
|
52. |
Ji RC. Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: New insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev, 2006, 25(4): 677-694.
|
53. |
Wróbel T, Dziegiel P, Mazur G, et al. LYVE-1 expression on high endothelial venules (HEVs) of lymph nodes. Lymphology, 2005, 38(3): 107-110.
|
54. |
韩松辰. 淫羊藿素对食管癌干细胞生理活性的影响及机制研究. 甘肃中医药大学, 2019.Han SC. Effects of icaritin on the physiological activity of esophageal cancer stem cells and its mechanism. Gansu Univ Chin Med, 2019.
|
55. |
Dutz S, Hergt R. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperthermia, 2013, 29(8): 790-800.
|
56. |
Overgaard K, Overgaard J. Investigation on the possibility of a thermic tumour therapy. Ⅱ. Action of combined heat-roentgen treatment on a transplanted mouse mammary carcinoma. Eur J Cancer (1965), 1972, 8(5): 573-575.
|
57. |
Akiyama S, Kawasaki S, Kodera Y, et al. A new method of thermo-chemotherapy using a stent for patients with esophageal cancer. Surg Today, 2006, 36(1): 19-24.
|
58. |
Lanier OL, Korotych OI, Monsalve AG, et al. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia. Int J Hyperthermia, 2019, 36(1): 687-701.
|
59. |
康艳霞, 张贺龙. 肿瘤热疗机制的研究进展. 现代肿瘤医学, 2008(3): 473-475.Kang YX, Zhang HL. Research progress on the mechanism of tumor hyperthermia. Modern Oncol Med, 2008(3): 473-475.
|
60. |
Chen Y, Su M, Jia L, et al. Synergistic chemo-photothermal and ferroptosis therapy of polydopamine nanoparticles for esophageal cancer. Nanomedicine (Lond), 2022, 17(16): 1115-1130.
|
61. |
路新丽, 王以薇, 张东生. 三氧化二砷/锰锌铁氧体复合纳米粒体外治疗食管癌. 中国组织工程研究, 2013, 17(08): 1378-1383.Lu XL, Wang YW, Zhang DS. Arsenic trioxide/manganese zinc ferrite composite nanoparticles for the treatment of esophageal cancer in vitro. Chin Tissue Engin Res, 2013, 17(08): 1378-1383.
|