1. |
World Health Organization. Lung cancer. (2023-06-26) [2024-07-16]. https://www.who.int/news-room/fact-sheets/detail/lung-cancer.
|
2. |
Zhang Y, Vaccarella S, Morgan E, et al. Global variations in lung cancer incidence by histological subtype in 2020: A population-based study. Lancet Oncol, 2023, 24(11): 1206-1218.
|
3. |
Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Glob Health, 2019, 85(1): 8.
|
4. |
Succony L, Rassl DM, Barker AP, et al. Adenocarcinoma spectrum lesions of the lung: Detection, pathology and treatment strategies. Cancer Treat Rev, 2021, 99: 102237.
|
5. |
Kim M, Costello J. DNA methylation: An epigenetic mark of cellular memory. Exp Mol Med, 2017, 49(4): e322.
|
6. |
Martisova A, Holcakova J, Izadi N, et al. DNA methylation in solid tumors: Functions and methods of detection. Int J Mol Sci, 2021, 22(8): 4247.
|
7. |
Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 2009, 462(7271): 315-322.
|
8. |
Li N, Zeng Y, Tai M, et al. Analysis of the prognostic value and gene expression mechanism of SHOX2 in lung adenocarcinoma. Front Mol Biosci, 2021, 8: 688274.
|
9. |
Dubois F, Bergot E, Zalcman G, et al. RASSF1A, puppeteer of cellular homeostasis, fights tumorigenesis, and metastasis-an updated review. Cell Death Dis, 2019, 10(12): 928.
|
10. |
Li N, Zeng Y, Huang J. Signaling pathways and clinical application of RASSF1A and SHOX2 in lung cancer. J Cancer Res Clin Oncol, 2020, 146(6): 1379-1393.
|
11. |
Wu J, Li P. Detection of short stature homeobox 2 and RAS-associated domain family 1 subtype A DNA methylation in interventional pulmonology. World J Clin Cases, 2021, 9(20): 5391-5397.
|
12. |
Zhao J, Lu Y, Ren X, et al. Association of the SHOX2 and RASSF1A methylation levels with the pathological evolution of early-stage lung adenocarcinoma. BMC Cancer, 2024, 24(1): 687.
|
13. |
Nilius H, Tsouka S, Nagler M, et al. Machine learning applications in precision medicine: Overcoming challenges and unlocking potential. TrAC Trends Anal Chem, 2024, 179: 117872.
|
14. |
Xing W, Sun H, Yan C, et al. A prediction model based on DNA methylation biomarkers and radiological characteristics for identifying malignant from benign pulmonary nodules. BMC Cancer, 2021, 21(1): 263.
|
15. |
Schneider KU, Dietrich D, Fleischhacker M, et al. Correlation of SHOX2 gene amplification and DNA methylation in lung cancer tumors. BMC Cancer, 2011, 11: 102.
|
16. |
Burbee DG, Forgacs E, Zöchbauer-Müller S, et al. Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst, 2001, 93(9): 691-699.
|
17. |
Deng Q, Su B, Ji X, et al. Predictive value of unmethylated RASSF1A on disease progression in non-small cell lung cancer patients receiving pemetrexed-based chemotherapy. Cancer Biomark, 2020, 27(3): 313-323.
|
18. |
Gao H, Yang J, He L, et al. The diagnostic potential of SHOX2 and RASSF1A DNA methylation in early lung adenocarcinoma. Front Oncol, 2022, 12: 849024.
|
19. |
Zhang C, Lu J, Zhang QW, et al. USP7 promotes cell proliferation through the stabilization of Ki-67 protein in non-small cell lung cancer cells. Int J Biochem Cell Biol, 2016, 79: 209-221.
|
20. |
Juríková M, Danihel Ľ, Polák Š, et al. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochem, 2016, 118(5): 544-552.
|
21. |
Dubois F, Keller M, Calvayrac O, et al. RASSF1A suppresses the invasion and metastatic potential of human non-small cell lung cancer cells by inhibiting YAP activation through the GEF-H1/RhoB pathway. Cancer Res, 2016, 76(6): 1627-1640.
|
22. |
Marques-Silva J, Gerspacher T, Cooper MC, et al, Explaining naive bayes and other linear classifiers with polynomial time and delay. Adv Neural Inf Process Syst, 2020, 33: 20590-20600.
|
23. |
Pavlyshenko B. Machine learning, linear and bayesian models for logistic regression in failure detection problems. 2016 IEEE International Conference On Big Data (Big Data), Washington, DC, USA, 2016, 2046-2050.
|
24. |
Chen T, Guestrin C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'16). Association for Computing Machinery, New York, NY, USA, 2016. 785-794.
|
25. |
Liu Y, Wang Y, Zhang J. New Machine Learning Algorithm: Random Forest. In: Liu B, Ma M, Chang J (eds) Information Computing and Applications. ICICA 2012. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 7473: 246-252.
|