1. |
蒙延海, 张燕搏, 刘平, 等. 《2022AHA/ACC/HFSA心力衰竭管理指南》解读: 心力衰竭新理念和心外科关注点. 中国胸心血管外科临床杂志, 2022, 29(6): 676-683.Meng YH, Zhang YB, Liu P, et al. Interpretation of 2022 AHA/ACC/HFSA guideline for the management of heart failure: New concepts of heart failure and cardiac surgery concerns. Chin J Clin Thorac Cardiovasc Surg, 2022, 29(6): 676-683.
|
2. |
张学成, 刘岩, 张晶晶, 等. 急性心力衰竭患者30天再住院率: 基于真实世界研究与随机对照试验比较的Meta分析. 中国循证医学杂志, 2021, 21(10): 1203-1210.Zhang XC, Liu Y, Zhang JJ, et al. 30-day readmission of patients with acute heart failure: A meta-analysis of real-world studies vs. randomized controlled trials. Chin J Evid-Based Med, 2021, 21(10): 1203-1210.
|
3. |
Chioncel O, Mebazaa A, Maggioni AP, et al. Acute heart failure congestion and perfusion status-impact of the clinical classification on in-hospital and long-term outcomes; Insights from the ESC-EORP-HFA Heart Failure Long-Term Registry. Eur J Heart Fail, 2019, 21(11): 1338-1352.
|
4. |
Wang H, Chai K, Du M, et al. Prevalence and incidence of heart failure among urban patients in China: A national population-based analysis. Circ Heart Fail, 2021, 14(10): e008406.
|
5. |
王薇, 雷璐碧, 赵倩, 等. 急性心力衰竭再入院及死亡风险预测模型研究进展. 中华流行病学杂志, 2023, 44(12): 2005-2011.Wang W, Lei LB, Zhao Q, et al. Progress in research of models for predicting the risk of readmission and mortality among patients with acute heart failure. Chin J Epidemiol, 2023, 44(12): 2005-2011.
|
6. |
Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: The CHARMS checklist. PLoS Med, 2014, 11(10): e1001744.
|
7. |
Wolff RF, Moons KGM, Riley RD, et al. PROBAST: A tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med, 2019, 170(1): 51-58.
|
8. |
陈香萍, 张奕, 庄一渝, 等. PROBAST: 诊断或预后多因素预测模型研究偏倚风险的评估工具. 中国循证医学杂志, 2020, 20(06): 737-744.Chen XP, Zhang Y, Zhuang YY, et al. PROBAST: A tool for assessing risk of bias in the study of diagnostic or prognosticmulti-factorial predictive models. Chin J Evid-Based Med, 2020, 20(06): 737-744.
|
9. |
Galvão TF, Tiguman GMB, Sarkis-Onofre R. The PRISMA 2020 statement in Portuguese: Updated recommendations for reporting systematic reviews. Epidemiol Serv Saude, 2022, 31(2): e2022364.
|
10. |
张传备, 李方, 翟春晓, 等. 高斯过程模型对慢性心衰患者1年内再入院的风险评估. 山东大学学报(医学版), 2020, 58(6): 28-33.Zhang CB, Li F, Zhai CX, et al. Gaussian process model for risk assessment of readmission for patients with chronic heart failure within one year. J Shandong Univ (Health Sci), 2020, 58(6): 28-33.
|
11. |
张春旭. 老年心力衰竭合并房颤患者1年内再住院风险列线图预测模型构建. 中国社区医师, 2023, 39(33): 47-49.Zhang CX. Construction of a 1-year rehospitalization risk prediction model in elderly patients with heart failure complicated with atrial fibrillation. Chin Community Doct, 2023, 39(33): 47-49.
|
12. |
盛松, 黄烨. 心力衰竭病人90 d内再入院的交互式列线图模型建立与验证. 中西医结合心脑血管病杂志, 2023, 21(16): 2909-2915.Sheng S, Huang Y. Establishment and validation of the interactive nomogram model for all-cause readmission within 90-days in patients with heart failure. Chin J Integr Med Cardio-Cerebrovasc Dis, 2023, 21(16): 2909-2915.
|
13. |
王金琳, 郭文昀, 赵丽. 老年慢性心力衰竭患者6个月内再住院风险的Logistic回归分析. 中国病案, 2023, 24(3): 59-63.Wang JL, Guo WJ, Zhao L. Logistic regression analysis of the risk of rehospitalization within 6 months in elderly patients with chronic heart failure. Chin Med Rec, 2023, 24(3): 59-63.
|
14. |
朱曙光, 张爱雄. 建立预测射血分数保留心力衰竭病人1年内再入院风险的列线图模型. 安徽医药, 2021, 25(6): 1185-1189.Zhu SG, Zhang AX. Establishment of a nomogram model to predict the risk of readmission within 1 year in patients with preserved ejection fraction heart failure. Anhui Med Pharm J, 2021, 25(6): 1185-1189.
|
15. |
毕健成, 刘群英, 冯俊灵, 等. 老年急性心力衰竭病人非计划性再入院的预测模型构建及风险分层研究. 中西医结合心脑血管病杂志, 2023, 21(10): 1860-1864.Bi JC, Liu QY, Feng JL, et al. Predictive model construction and risk stratification of unplanned readmission in elderly patients with acute heart failure. Chin J Integr Med Cardio-Cerebrovasc Dis, 2023, 21(10): 1860-1864.
|
16. |
刘文婷, 关晓楠, 宗敏, 等. 远程随诊对单中心新冠疫情期间老年慢性心力衰竭患者的预后影响及再入院预测模型的建立与验证. 中国循证心血管医学杂志, 2023, 15(2): 157-161.Liu WT, Guan XN, Zong M, et al. Effect of remote follow-up on the prognosis of elderly patients with chronic heart failure during COVID-19 and establishment and validation of readmission prediction model. Chin J Evid-Based Cardiovasc Med, 2023, 15(2): 157-161.
|
17. |
尹海宁, 张文杰. 慢性心力衰竭患者易损期非计划性再入院风险预测模型的构建及验证. 实用心脑肺血管病杂志, 2022, 30(5): 9-14, 19.Yin HN, Zhang WJ. Construction and validation of risk prediction model for unplanned readmission during vulnerable period in patients with chronic heart failure. Pract J Card Cereb Pneuma Vasc Dis, 2022, 30(5): 9-14, 19.
|
18. |
黄荔荔, 徐琴, 沈建宏, 等. 228例心力衰竭患者非计划再入院率调查及logistic预测模型建立研究. 中国心血管病研究, 2022, 20(9): 811-816.Huang LL, Xu Q, Shen JH, et al. Investigation of unplanned readmission rate of 228 heart failure patients in Rugao city and establishment of logistic prediction model. Chin J Cardiovasc Res, 2022, 20(9): 811-816.
|
19. |
徐瑞, 肖海军, 胡琛. 基于WGBDT的心衰患者半年内再入院风险预测. 中南民族大学学报(自然科学版), 2023, 42(3): 425-432.Xu R, Xiao HJ, Hu C. WGBDT-based risk prediction for readmission within six months inheart failure patients. J South-Central Minzu Univ (Nat Sci Ed), 2023, 42(3): 425-432.
|
20. |
李代毅. 心力衰竭30天再入院风险预测模型的构建及药物治疗管理平台的初步探索. 重庆医科大学, 2022.Li DY. Construction of risk prediction model for 30-day readmission of heart failure and preliminary exploration of drug treatment management platform. ChongQing Medical University, 2022.
|
21. |
Tian J, Yan J, Han G, et al. Machine learning prognosis model based on patient-reported outcomes for chronic heart failure patients after discharge. Health Qual Life Outcomes, 2023, 21(1): 31.
|
22. |
Zhang X, Yao Y, Zhang Y, et al. Prognostic value of patient-reported outcomes in predicting 30 day all-cause readmission among older patients with heart failure. ESC Heart Fail, 2022, 9(5): 2840-2850.
|
23. |
Gao S, Yin G, Xia Q, et al. Development and validation of a nomogram to predict the 180-day readmission risk for chronic heart failure: A multicenter prospective study. Front Cardiovasc Med, 2021, 8: 731730.
|
24. |
Chen S, Hu W, Yang Y, et al. Predicting six-month re-admission risk in heart failure patients using multiple machine learning methods: A study based on the Chinese heart failure population database. J Clin Med, 2023, 12(3): 870.
|
25. |
Han Q, Ren J, Tian J, et al. A nomogram based on a patient-reported outcomes measure: Predicting the risk of readmission for patients with chronic heart failure. Health Qual Life Outcomes, 2020, 18(1): 290.
|
26. |
Zhang Y, Wang H, Yin C, et al. Development of a prediction model for the risk of 30-day unplanned readmission in older patients with heart failure: A multicenter retrospective study. Nutr Metab Cardiovasc Dis, 2023, 33(10): 1878-1887.
|
27. |
Tan BY, Gu JY, Wei HY, et al. Electronic medical record-based model to predict the risk of 90-day readmission for patients with heart failure. BMC Med Inform Decis Mak, 2019, 19(1): 193.
|
28. |
Hu Y, Wang X, Xiao S, et al. Development and validation of a nomogram model for predicting the risk of readmission in patients with heart failure with reduced ejection fraction within 1 year. Cardiovasc Ther, 2022, 2022: 4143173.
|
29. |
Zheng L, Smith NJ, Teng BQ, et al. Predictive model for heart failure readmission using nationwide readmissions database. Mayo Clin Proc Innov Qual Outcomes, 2022, 6(3): 228-238.
|
30. |
Allam A, Nagy M, Thoma G, et al. Neural networks versus logistic regression for 30 days all-cause readmission prediction. Sci Rep, 2019, 9(1): 9277.
|
31. |
Golas SB, Shibahara T, Agboola S, et al. A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: A retrospective analysis of electronic medical records data. BMC Med Inform Decis Mak, 2018, 18(1): 44.
|
32. |
Sohrabi B, Vanani I R, Gooyavar A, et al. Predicting the readmission of heart failure patients through data analytics. Journal Inf Knowl Manag, 2019, 18(1): 1950012.
|
33. |
卢启帆, 刘启明, 周红梅, 等. 慢性心力衰竭患者躯体化症状、焦虑、抑郁对临床结局的影响. 上海交通大学学报(医学版), 2023, 43(9): 1153-1161.Lu QF, Liu QM, Zhou HM, et al. Effect of somatic symptoms, anxiety and depression on clinical prognosis in patients with chronic heart failure. J Shanghai Jiaotong Univ (Med Sci), 2023, 43(9): 1153-1161.
|
34. |
李佳欢, 王璐, 曲静, 等. 慢性心力衰竭患者再入院调查及影响因素分析. 华南预防医学, 2024, 50(4): 323-328.Li JH, Wang L, Qu J, et al. General situation and influencing factors of readmission in patients with chronic heart failure. South China J Prev Med, 2024, 50(4): 323-328.
|
35. |
Lee KS, Lennie TA, Heo S, et al. Prognostic importance of sleep quality in patients with heart failure. Am J Crit Care, 2016, 25(6): 516-525.
|
36. |
任丽丽, 戴国华, 高武霖, 等. 基于Lasso-Cox回归评价中医药干预在慢性心力衰竭患者预后中的治疗价值. 中华中医药杂志, 2022, 37(10): 6000-6005.Ren LL, Dai GH, Gao WL, et al. Evaluation of the therapeutic value of traditional Chinese medicine intervention on the prognosis of patients with chronic heart failure based on the Lasso-Cox regression model. China J Tradit Chin Med, 2022, 37(10): 6000-6005.
|
37. |
孙聪, 戴国华, 管慧, 等. 基于决策树算法的慢性心力衰竭患者中西医预后模型构建及验证. 中国中医基础医学杂志, 2023, 29(1): 120-126.Sun C, Dai GH, Guan H, et al. Construction and validation of traditional Chinese and Western medicine prognosis model for patients with chronic heart failure based on decision tree algorithm. J Basic Chin Med, 2023, 29(1): 120-126.
|
38. |
Shin S, Austin PC, Ross HJ, et al. Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality. ESC Heart Fail, 2021, 8(1): 106-115.
|
39. |
DeGregory KW, Kuiper P, DeSilvio T, et al. A review of machine learning in obesity. Obes Rev, 2018, 19(5): 668-685.
|
40. |
de Vries BCS, Hegeman JH, Nijmeijer W, et al. Comparing three machine learning approaches to design a risk assessment tool for future fractures: Predicting a subsequent major osteoporotic fracture in fracture patients with osteopenia and osteoporosis. Osteoporos Int, 2021, 32(3): 437-449.
|
41. |
Moons KG, Altman DG, Vergouwe Y, et al. Prognosis and prognostic research: Application and impact of prognostic models in clinical practice. BMJ, 2009, 338: b606.
|