- Department of oncology surgery, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200030, P. R. China;
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide. Although surgery can cure some early-stage resectable patients, the postoperative recurrence rate remains as high as 30%-55%. Perioperative immune checkpoint inhibitor (ICI) therapy, which includes "neoadjuvant" therapy before surgery and "adjuvant" therapy after surgery, has significantly improved survival outcomes in resectable NSCLC patients. Large clinical studies, such as CheckMate 816, have demonstrated the superiority of neoadjuvant ICIs combined with chemotherapy in increasing the pathological complete response rate (pCR) and prolonging event-free survival (EFS). However, even with these advanced treatments, some patients do not achieve long-term benefits and experience early recurrence. This paper reviews the latest research progress of perioperative ICIs in NSCLC treatment, particularly the effectiveness of neoadjuvant chemoimmunotherapy in improving pCR and extending EFS. It further explores the recurrence patterns, resistance mechanisms, and potential biomarkers in NSCLC patients after neoadjuvant immunotherapy. By integrating basic research and clinical data, we analyze the mechanisms of early recurrence following perioperative immunotherapy and discuss future research directions and therapeutic strategies, providing new insights into precision treatment and recurrence prevention for NSCLC patients.
Copyright © the editorial department of Chinese Journal of Clinical Thoracic and Cardiovascular Surgery of West China Medical Publisher. All rights reserved
1. | Goldstraw P, Ball D, Jett J R, et al. Non-small-cell lung cancer. The Lancet, 2011, 378(9804): 1727-1740. |
2. | Taylor MD, Nagji AS, Bhamidipati CM, et al. Tumor recurrence after complete resection for non-small cell lung cancer. Ann Thorac Surg, 2012, 93(6): 1813-1821. |
3. | Uramoto H, Tanaka F. Recurrence after surgery in patients with nsclc. Translational lung cancer research, 2014, 3(4): 242. |
4. | Ettinger DS, Wood DE, Aisner DL, et al. Non–small cell lung cancer, version 3. 2022, nccn clinical practice guidelines in oncology. J Natl Comprehensive Canr Net, 2022, 20(5): 497-530. |
5. | Pignon JP, Tribodet H, Scagliotti GV, et al. Lung adjuvant cisplatin evaluation: A pooled analysis by the lace collaborative group. J Clin Oncol, 2008, 26(21): 3552-3559. |
6. | 中国抗癌协会肺癌专业委员会, 中华医学会肿瘤学分会肺癌学组, 中国胸部肿瘤研究协作组, 等. Ⅰ~Ⅲb期非小细胞肺癌完全切除术后辅助治疗指南(2021版). 中华医学杂志, 2021, 101(16): 11.China Anti Cancer Association Lung Cancer Professional Committee, Chinese Medical Association Oncology Branch Lung Cancer Group, China Chest Tumor Research Collaboration Group, etc Guidelines for adjuvant therapy after complete resection of stage I-IIIb non-small cell lung cancer (2021 edition). Natl Med J China, 2021, 101(16): 11. |
7. | Group N M-a C. Preoperative chemotherapy for non-small-cell lung cancer: A systematic review and meta-analysis of individual participant data. Lancet, 2014, 383(9928): 1561-1571. |
8. | Felip E, Altorki N, Zhou C, et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage Ⅰb–Ⅲa non-small-cell lung cancer (impower010): A randomised, multicentre, open-label, phase 3 trial. The Lancet, 2021, 398(10308): 1344-1357. |
9. | O’brien M, Paz-Ares L, Marreaud S, et al. Pembrolizumab versus placebo as adjuvant therapy for completely resected stage ib–Ⅲa non-small-cell lung cancer (pearls/keynote-091): An interim analysis of a randomised, triple-blind, phase 3 trial. The Lancet Oncology, 2022, 23(10): 1274-1286. |
10. | Forde PM, Chaft E, Smith KN, et al. Neoadjuvant pd-1 blockade in resectable lung cancer. NEJM, 2018, 378(21): 1976-1986. |
11. | Forde PM, Spicer J, Lu S, et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. NEJM, 2022, 386(21): 1973-1985. |
12. | Akinboro O, Drezner N, Amatya A, et al. Us food and drug administration approval summary: Nivolumab plus platinum-doublet chemotherapy for the neoadjuvant treatment of patients with resectable non–small-cell lung cancer. J Clin Oncol, 2023, 41(17): 3249-3259. |
13. | Spicer J, Girard N, Provencio M, et al. Neoadjuvant nivolumab (nivo) + hemotherapy (chemo) vs chemo in patients (pts) with resectable nsclc: 4-year update from checkmate 816. Journal of Clinical Oncology, 2024, 42(17_suppl): LBA8010-LBA8010. |
14. | Altorki N K, Walsh Z H, Melms J C, et al. Neoadjuvant durvalumab plus radiation versus durvalumab alone in stages Ⅰ–Ⅲ non-small cell lung cancer: Survival outcomes and molecular correlates of a randomized phase Ⅱ trial. Nature Communications, 2023, 14(1): 8435. |
15. | Provencio M, Nadal E, Insa A, et al. Neoadjuvant chemotherapy and nivolumab in resectable non-small-cell lung cancer (nadim): An open-label, multicentre, single-arm, phase 2 trial. The Lancet Oncology, 2020, 21(11): 1413-1422. |
16. | Provencio M, Serna-Blasco R, Nadal E, et al. Overall survival and biomarker analysis of neoadjuvant nivolumab plus chemotherapy in operable stage Ⅲa non–small-cell lung cancer (nadim phase Ⅱ trial). J Clin Oncol, 2022, 40(25): 2924-2933. |
17. | Cascone T, Awad MM, Spicer JD, et al. Perioperative nivolumab in resectable lung cancer. NEJM, 2024, 390(19): 1756-1769. |
18. | Heymach J V, Harpole D, Mitsudomi T, et al. Perioperative durvalumab for resectable non–small-cell lung cancer. NEJM, 2023, 389(18): 1672-1684. |
19. | Lu S, Zhang W, Wu L, et al. Perioperative toripalimab plus chemotherapy for patients with resectable non–small cell lung cancer: The neotorch randomized clinical trial. JAMA, 2024, 331(3): 201-211. |
20. | Potter AL, Costantino CL, Suliman RA, et al. Recurrence after complete resection for non-small cell lung cancer in the national lung screening trial. Ann Thorac Surg, 2023, 116(4): 684-692. |
21. | Pan H, Chen H, Kong W, et al. Video-assisted thoracoscopic surgery versus thoracotomy following neoadjuvant immunochemotherapy in resectable stage Ⅲ non-small cell lung cancer among chinese populations: A multi-center retrospective cohort study. Clin Lung Cancer, 2024. |
22. | Tian Y, Liu Z, Pan H, et al. Perioperative immune checkpoint blockades improve prognosis of resectable non-small cell lung cancer. Eur JCardio-Thorac Surg, 2024, 65(4): . |
23. | Mountzios G, Remon J, Hendriks LE, et al. Immune-checkpoint inhibition for resectable non-small-cell lung cancer—opportunities and challenges. Nat Rev Clin Oncol, 2023, 20(10): 664-677. |
24. | Chen D S, Mellman I. Oncology meets immunology: The cancer-immunity cycle. Immunity, 2013, 39(1): 1-10. |
25. | Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell, 2011, 144(5): 646-674. |
26. | Kluger HM, Tawbi HA, Ascierto ML, et al. Defining tumor resistance to PD-1 pathway blockade: Recommendations from the first meeting of the sitc immunotherapy resistance taskforce. J Immunother Cancer, 2020, 8(1). |
27. | Passaro A, Brahmer J, Antonia S, et al. Managing resistance to immune checkpoint inhibitors in lung cancer: Treatment and novel strategies. J Clinl Oncol, 2022, 40(6): 598-610. |
28. | Sharma P, Hu-Lieskovan S, Wargo J A, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 2017, 168(4): 707-723. |
29. | Aldea M, Andre F, Marabelle A, et al. Overcoming resistance to tumor-targeted and immune-targeted therapies. Cancer Discov, 2021, 11(4): 874-899. |
30. | Schumacher T N, Schreiber R D. Neoantigens in cancer immunotherapy. Science, 2015, 348(6230): 69-74. |
31. | Van Allen EM, Miao D, Schilling B, et al. Genomic correlates of response to ctla-4 blockade in metastatic melanoma. Science, 2015, 350(6257): 207-211. |
32. | Chen N, Fang W, Zhan J, et al. Upregulation of PD-l1 by egfr activation mediates the immune escape in EGFR-driven NSCLC: Implication for optional immune targeted therapy for NSCLC patients with egfr mutation. J Thorac Oncol, 2015, 10(6): 910-923. |
33. | Zhang N, Zeng Y, Du W, et al. The EGFR pathway is involved in the regulation of pd-l1 expression via the il-6/jak/stat3 signaling pathway in EGFR-mutated non-small cell lung cancer. Intern J Oncol, 2016, 49(4): 1360-1368. |
34. | Ma L, Lv J, Dong Y, et al. Pd-l1 expression and its regulation in lung adenocarcinoma with alk translocation. Interdisciplinary Sciences: Computational Life Sciences, 2019, 11: 266-272. |
35. | Guisier F, Dubos-Arvis C, Viñas F, et al. Efficacy and safety of anti–PD-1 immunotherapy in patients with advanced NSCLC with BRAF, her2, or met mutations or ret translocation: Gfpc 01-2018. J Thorac Oncol, 2020, 15(4): 628-636. |
36. | Offin M, Guo R, Wu S L, et al. Immunophenotype and response to immunotherapy of ret-rearranged lung cancers. JCO Prec Oncol, 2019: 3. |
37. | Sabari J, Leonardi G, Shu C, et al. PD-l1 expression, tumor mutational burden, and response to immunotherapy in patients with met exon 14 altered lung cancers. Ann Oncol, 2018, 29(10): 2085-2091. |
38. | Biton J, Mansuet-Lupo A, Pécuchet N, et al. Tp53, stk11, and EGFR mutations predict tumor immune profile and the response to anti–PD-1 in lung adenocarcinoma. Clinical Cancer Research, 2018, 24(22): 5710-5723. |
39. | Xu X, Yang Y, Liu X, et al. Nfe2l2/keap1 mutations correlate with higher tumor mutational burden value/PD‐l1 expression and potentiate improved clinical outcome with immunotherapy. The Oncol, 2020, 25(6): e955-e963. |
40. | Mascaux C, Iannino N, Martin B, et al. The role of RAS oncogene in survival of patients with lung cancer: A systematic review of the literature with meta-analysis. Br J Cancer, 2005, 92(1): 131-139. |
41. | Cascetta P, Marinello A, Lazzari C, et al. Kras in nsclc: State of the art and future perspectives. Cancers, 2022, 14(21): 5430. |
42. | Judd J, Abdel Karim N, Khan H, et al. Characterization of kras mutation subtypes in non–small cell lung cancer. Molecular cancer therapeutics, 2021, 20(12): 2577-2584. |
43. | Skoulidis F, Goldberg ME, Greenawalt DM, et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov, 2018, 8(7): 822-835. |
44. | Anagnostou V, Smith KN, Forde PM, et al. Evolution of neoantigen landscape during immune checkpoint blockade in non–small cell lung cancer. Cancer Discov, 2017, 7(3): 264-276. |
45. | Spicer J D, Cascone T, Wynes M W, et al. Neoadjuvant and adjuvant treatment for early-stage resectable non-small cell lung cancer (NSCLC): Consensus recommendations from the international association for the study of lung cancer (iaslc). J Thorac Oncol, 2024. |
46. | Gettinger S, Choi J, Hastings K, et al. Impaired HLA classⅠ antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov, 2017, 7: 1420-1435. |
47. | Peng W, Chen JQ, Liu C, et al. Loss of PTEN promotes resistance to T cell–mediated immunotherapy. Cancer Discov, 2016, 6(2): 202-216. |
48. | Bellucci R, Martin A, Bommarito D, et al. Interferon-γ-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to nk cells through upregulation of PD-l1 expression. Oncoimmunology, 2015, 4(6): e1008824. |
49. | Tang T, Huang X, Zhang G, et al. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct Target Ther., 2021, 6(1): 72. |
50. | Spranger S, Bao R, Gajewski T F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature, 2015, 523(7559): 231-235. |
51. | Attili I, Karachaliou N, Bonanno L, et al. STAT3 as a potential immunotherapy biomarker in oncogene-addicted non-small cell lung cancer. Ther Adv Med Oncol, 2018, 10: 1758835918763744. |
52. | Zhou X, Wang N, Zhang Y, et al. KAT2B is an immune infiltration-associated biomarker predicting prognosis and response to immunotherapy in non‐small cell lung cancer. Invest New Drugs, 2022, 40(1): 43-57. |
53. | Spranger S, Gajewski TF. Impact of oncogenic pathways on evasion of antitumour immune responses. Nature Reviews Cancer, 2018, 18(3): 139-147. |
54. | Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer letters, 2017, 387: 61-68. |
55. | Gabrilovich D I, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol, 2012, 12(4): 253-268. |
56. | Meyer C, Cagnon L, Costa-Nunes CM, et al. Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol Immunother, 2014, 63(3): 247-57. |
57. | Wen T, Su C, Cheng X, et al. Circulating myeloid-derived suppressors cells correlate with clinicopathological characteristics and outcomes undergoing neoadjuvant chemoimmunotherapy in non-small cell lung cancer. Clinical and Translational Oncology, 2022: 1-11. |
58. | Kim S R, Chun S H, Kim J R, et al. The implications of clinical risk factors, car index, and compositional changes of immune cells on hyperprogressive disease in non-small cell lung cancer patients receiving immunotherapy. BMC Cancer, 2021, 21: 1-11. |
59. | Sedighzadeh SS, Khoshbin AP, Razi S, et al. A narrative review of tumor-associated macrophages in lung cancer: Regulation of macrophage polarization and therapeutic implications. Transl Lung Cancer Res, 2021, 10(4): 1889. |
60. | Xia Y, Rao L, Yao H, et al. Engineering macrophages for cancer immunotherapy and drug delivery. Advanced Materials, 2020, 32(40): 2002054. |
61. | Curiel TJ. Tregs and rethinking cancer immunotherapy. J Clin Invest, 2007, 117(5): 1167-1174. |
62. | Thommen D S, Koelzer V H, Herzig P, et al. A transcriptionally and functionally distinct pd-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with pd-1 blockade. Nature Med, 2018, 24(7): 994-1004. |
63. | Zappasodi R, Budhu S, Hellmann M D, et al. Non-conventional inhibitory cd4+ foxp3− pd-1hi t cells as a biomarker of immune checkpoint blockade activity. Cancer cell, 2018, 33(6): 1017-1032. e1017. |
64. | Kumagai S, Togashi Y, Kamada T, et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nature Immunol, 2020, 21(11): 1346-1358. |
65. | Han R, Zhang Y, Wang T, et al. Tumor immune microenvironment predicts the pathologic response of neoadjuvant chemoimmunotherapy in non–small‐cell lung cancer. Cancer Science, 2023, 114(6): 2569-2583. |
66. | Guo X, Zhang Y, Zheng L, et al. Global characterization of t cells in non-small-cell lung cancer by single-cell sequencing. Nature Med, 2018, 24(7): 978-985. |
67. | Chen X, Gao A, Zhang F, et al. ILT4 inhibition prevents tam-and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-pd-l1 therapy in NSCLC with EGFR activation. Theranostics, 2021, 11(7): 3392. |
68. | Sanmamed M F, Nie X, Desai SS, et al. A burned-out CD8+ T-cell subset expands in the tumor microenvironment and curbs cancer immunotherapy. Cancer Discov, 2021, 11(7): 1700-1715. |
69. | Gao Q, Wang S, Chen X, et al. Cancer-cell-secreted cxcl11 promoted CD8+ T cells infiltration through docetaxel-induced-release of hmgb1 in NSCLC. J Immunother Cancer, 2019, 7: 1-17. |
70. | Rizvi N A, Hellmann M D, Snyder A, et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science, 2015, 348(6230): 124-128. |
71. | Wu C-F, Fu JY, Yeh CJ, et al. Recurrence risk factors analysis for stageⅠnon-small cell lung cancer. Medicine, 2015, 94(32): e1337. |
72. | Renaud S, Falcoz P-E, Schaeffer M, et al. Prognostic value of the KRAS g12v mutation in 841 surgically resected caucasian lung adenocarcinoma cases. Br J Cancer, 2015, 113(8): 1206-1215. |
73. | Zhao Y, Varn FS, Cai G, et al. A p53-deficiency gene signature predicts recurrence risk of patients with early-stage lung adenocarcinoma. Cancer Epidemiol Biomarkers Prev, 2018, 27(1): 86-95. |
74. | Al-Alao B S, Gately K, Nicholson S, et al. Prognostic impact of vascular and lymphovascular invasion in early lung cancer. Asian Cardiovascular and Thoracic Annals, 2014, 22(1): 55-64. |
75. | Huang H, Wang T, Hu B, et al. Visceral pleural invasion remains a size-independent prognostic factor in stageⅠnon-small cell lung cancer. Ann Thorac Surg, 2015, 99(4): 1130-1139. |
76. | Nojiri T, Hamasaki T, Inoue M, et al. Long-term impact of postoperative complications on cancer recurrence following lung cancer surgery. Ann Surg Oncol, 2017, 24: 1135-1142. |
77. | Frankell A M, Dietzen M, Al Bakir M, et al. The evolution of lung cancer and impact of subclonal selection in tracerx. Nature, 2023, 616(7957): 525-533. |
78. | Jamal-Hanjani M, Wilson GA, Mcgranahan N, et al. Tracking the evolution of non–small-cell lung cancer. NEJM, 2017, 376(22): 2109-2121. |
79. | Caso R, Sanchez-Vega F, Tan KS, et al. The underlying tumor genomics of predominant histologic subtypes in lung adenocarcinoma. J Thorac Oncol, 2020, 15(12): 1844-1856. |
80. | Kadara H, Choi M, Zhang J, et al. Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up. Ann Oncol, 2017, 28(1): 75-82. |
81. | Schmid D, Sobottka-Brillout AB, Manzo M, et al. Tumor immune dynamics and long-term clinical outcome of stage Ⅲa NSCLC patients treated with neoadjuvant chemoimmunotherapy. 2024. |
82. | Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 keynote-158 study. Lancet Oncol, 2020, 21(10): 1353-1365. |
83. | Goldberg S B, Schalper KA, Gettinger SN, et al. Pembrolizumab for management of patients with nsclc and brain metastases: Long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial. Lancet Oncol, 2020, 21(5): 655-663. |
84. | Sun Q, Hong Z, Zhang C, et al. Immune checkpoint therapy for solid tumours: Clinical dilemmas and future trends. Signal Transduct Target Ther, 2023, 8(1): 320. |
85. | Yang H, Ma W, Sun B, et al. Smoking signature is superior to programmed death-ligand 1 expression in predicting pathological response to neoadjuvant immunotherapy in lung cancer patients. Transl Lung Cancer Res, 2021, 10(9): 3807. |
86. | Diem S, Schmid S, Krapf M, et al. Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer (NSCLC) treated with nivolumab. Lung cancer, 2017, 111: 176-181. |
87. | Mezquita L, Auclin E, Ferrara R, et al. Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non–small cell lung cancer. JAMA Oncol, 2018, 4(3): 351-357. |
88. | Kaira K, Ichiki Y, Imai H, et al. Potential predictors of the pathologic response after neoadjuvant chemoimmunotherapy in resectable non-small cell lung cancer: A narrative review. Translational Lung Cancer Research, 2024, 13(5): 1137. |
89. | Abbosh C, Frankell A M, Harrison T, et al. Tracking early lung cancer metastatic dissemination in tracerx using ctdna. Nature, 2023, 616(7957): 553-562. |
90. | Wu M, Huang Q, Xie Y, et al. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol, 2022, 15(1): 24. |
91. | Zhang H, Hu Y, Wu T, et al. Clinical characteristics and novel strategies of immune checkpoint inhibitor rechallenge therapy for non-small cell lung cancer: A comprehensive review. Front Immunol, 2024, 14: 1309055. |
92. | Wakelee H, Liberman M, Kato T, et al. Perioperative pembrolizumab for early-stage non–small-cell lung cancer. NEJM, 2023, 389(6): 491-503. |
93. | Yue D, Wang W, Liu H, et al. Lba58 pathological response to neoadjuvant tislelizumab (TIS) plus platinum-doublet (PTDB) chemotherapy (CT) in resectable stage Ⅱ-Ⅲa nsclc patients (PTS) in the phase Ⅲ (ph3) rationale-315 trial. AnnS Oncol, 2023, 34: S1299. |
- 1. Goldstraw P, Ball D, Jett J R, et al. Non-small-cell lung cancer. The Lancet, 2011, 378(9804): 1727-1740.
- 2. Taylor MD, Nagji AS, Bhamidipati CM, et al. Tumor recurrence after complete resection for non-small cell lung cancer. Ann Thorac Surg, 2012, 93(6): 1813-1821.
- 3. Uramoto H, Tanaka F. Recurrence after surgery in patients with nsclc. Translational lung cancer research, 2014, 3(4): 242.
- 4. Ettinger DS, Wood DE, Aisner DL, et al. Non–small cell lung cancer, version 3. 2022, nccn clinical practice guidelines in oncology. J Natl Comprehensive Canr Net, 2022, 20(5): 497-530.
- 5. Pignon JP, Tribodet H, Scagliotti GV, et al. Lung adjuvant cisplatin evaluation: A pooled analysis by the lace collaborative group. J Clin Oncol, 2008, 26(21): 3552-3559.
- 6. 中国抗癌协会肺癌专业委员会, 中华医学会肿瘤学分会肺癌学组, 中国胸部肿瘤研究协作组, 等. Ⅰ~Ⅲb期非小细胞肺癌完全切除术后辅助治疗指南(2021版). 中华医学杂志, 2021, 101(16): 11.China Anti Cancer Association Lung Cancer Professional Committee, Chinese Medical Association Oncology Branch Lung Cancer Group, China Chest Tumor Research Collaboration Group, etc Guidelines for adjuvant therapy after complete resection of stage I-IIIb non-small cell lung cancer (2021 edition). Natl Med J China, 2021, 101(16): 11.
- 7. Group N M-a C. Preoperative chemotherapy for non-small-cell lung cancer: A systematic review and meta-analysis of individual participant data. Lancet, 2014, 383(9928): 1561-1571.
- 8. Felip E, Altorki N, Zhou C, et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage Ⅰb–Ⅲa non-small-cell lung cancer (impower010): A randomised, multicentre, open-label, phase 3 trial. The Lancet, 2021, 398(10308): 1344-1357.
- 9. O’brien M, Paz-Ares L, Marreaud S, et al. Pembrolizumab versus placebo as adjuvant therapy for completely resected stage ib–Ⅲa non-small-cell lung cancer (pearls/keynote-091): An interim analysis of a randomised, triple-blind, phase 3 trial. The Lancet Oncology, 2022, 23(10): 1274-1286.
- 10. Forde PM, Chaft E, Smith KN, et al. Neoadjuvant pd-1 blockade in resectable lung cancer. NEJM, 2018, 378(21): 1976-1986.
- 11. Forde PM, Spicer J, Lu S, et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. NEJM, 2022, 386(21): 1973-1985.
- 12. Akinboro O, Drezner N, Amatya A, et al. Us food and drug administration approval summary: Nivolumab plus platinum-doublet chemotherapy for the neoadjuvant treatment of patients with resectable non–small-cell lung cancer. J Clin Oncol, 2023, 41(17): 3249-3259.
- 13. Spicer J, Girard N, Provencio M, et al. Neoadjuvant nivolumab (nivo) + hemotherapy (chemo) vs chemo in patients (pts) with resectable nsclc: 4-year update from checkmate 816. Journal of Clinical Oncology, 2024, 42(17_suppl): LBA8010-LBA8010.
- 14. Altorki N K, Walsh Z H, Melms J C, et al. Neoadjuvant durvalumab plus radiation versus durvalumab alone in stages Ⅰ–Ⅲ non-small cell lung cancer: Survival outcomes and molecular correlates of a randomized phase Ⅱ trial. Nature Communications, 2023, 14(1): 8435.
- 15. Provencio M, Nadal E, Insa A, et al. Neoadjuvant chemotherapy and nivolumab in resectable non-small-cell lung cancer (nadim): An open-label, multicentre, single-arm, phase 2 trial. The Lancet Oncology, 2020, 21(11): 1413-1422.
- 16. Provencio M, Serna-Blasco R, Nadal E, et al. Overall survival and biomarker analysis of neoadjuvant nivolumab plus chemotherapy in operable stage Ⅲa non–small-cell lung cancer (nadim phase Ⅱ trial). J Clin Oncol, 2022, 40(25): 2924-2933.
- 17. Cascone T, Awad MM, Spicer JD, et al. Perioperative nivolumab in resectable lung cancer. NEJM, 2024, 390(19): 1756-1769.
- 18. Heymach J V, Harpole D, Mitsudomi T, et al. Perioperative durvalumab for resectable non–small-cell lung cancer. NEJM, 2023, 389(18): 1672-1684.
- 19. Lu S, Zhang W, Wu L, et al. Perioperative toripalimab plus chemotherapy for patients with resectable non–small cell lung cancer: The neotorch randomized clinical trial. JAMA, 2024, 331(3): 201-211.
- 20. Potter AL, Costantino CL, Suliman RA, et al. Recurrence after complete resection for non-small cell lung cancer in the national lung screening trial. Ann Thorac Surg, 2023, 116(4): 684-692.
- 21. Pan H, Chen H, Kong W, et al. Video-assisted thoracoscopic surgery versus thoracotomy following neoadjuvant immunochemotherapy in resectable stage Ⅲ non-small cell lung cancer among chinese populations: A multi-center retrospective cohort study. Clin Lung Cancer, 2024.
- 22. Tian Y, Liu Z, Pan H, et al. Perioperative immune checkpoint blockades improve prognosis of resectable non-small cell lung cancer. Eur JCardio-Thorac Surg, 2024, 65(4): .
- 23. Mountzios G, Remon J, Hendriks LE, et al. Immune-checkpoint inhibition for resectable non-small-cell lung cancer—opportunities and challenges. Nat Rev Clin Oncol, 2023, 20(10): 664-677.
- 24. Chen D S, Mellman I. Oncology meets immunology: The cancer-immunity cycle. Immunity, 2013, 39(1): 1-10.
- 25. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell, 2011, 144(5): 646-674.
- 26. Kluger HM, Tawbi HA, Ascierto ML, et al. Defining tumor resistance to PD-1 pathway blockade: Recommendations from the first meeting of the sitc immunotherapy resistance taskforce. J Immunother Cancer, 2020, 8(1).
- 27. Passaro A, Brahmer J, Antonia S, et al. Managing resistance to immune checkpoint inhibitors in lung cancer: Treatment and novel strategies. J Clinl Oncol, 2022, 40(6): 598-610.
- 28. Sharma P, Hu-Lieskovan S, Wargo J A, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 2017, 168(4): 707-723.
- 29. Aldea M, Andre F, Marabelle A, et al. Overcoming resistance to tumor-targeted and immune-targeted therapies. Cancer Discov, 2021, 11(4): 874-899.
- 30. Schumacher T N, Schreiber R D. Neoantigens in cancer immunotherapy. Science, 2015, 348(6230): 69-74.
- 31. Van Allen EM, Miao D, Schilling B, et al. Genomic correlates of response to ctla-4 blockade in metastatic melanoma. Science, 2015, 350(6257): 207-211.
- 32. Chen N, Fang W, Zhan J, et al. Upregulation of PD-l1 by egfr activation mediates the immune escape in EGFR-driven NSCLC: Implication for optional immune targeted therapy for NSCLC patients with egfr mutation. J Thorac Oncol, 2015, 10(6): 910-923.
- 33. Zhang N, Zeng Y, Du W, et al. The EGFR pathway is involved in the regulation of pd-l1 expression via the il-6/jak/stat3 signaling pathway in EGFR-mutated non-small cell lung cancer. Intern J Oncol, 2016, 49(4): 1360-1368.
- 34. Ma L, Lv J, Dong Y, et al. Pd-l1 expression and its regulation in lung adenocarcinoma with alk translocation. Interdisciplinary Sciences: Computational Life Sciences, 2019, 11: 266-272.
- 35. Guisier F, Dubos-Arvis C, Viñas F, et al. Efficacy and safety of anti–PD-1 immunotherapy in patients with advanced NSCLC with BRAF, her2, or met mutations or ret translocation: Gfpc 01-2018. J Thorac Oncol, 2020, 15(4): 628-636.
- 36. Offin M, Guo R, Wu S L, et al. Immunophenotype and response to immunotherapy of ret-rearranged lung cancers. JCO Prec Oncol, 2019: 3.
- 37. Sabari J, Leonardi G, Shu C, et al. PD-l1 expression, tumor mutational burden, and response to immunotherapy in patients with met exon 14 altered lung cancers. Ann Oncol, 2018, 29(10): 2085-2091.
- 38. Biton J, Mansuet-Lupo A, Pécuchet N, et al. Tp53, stk11, and EGFR mutations predict tumor immune profile and the response to anti–PD-1 in lung adenocarcinoma. Clinical Cancer Research, 2018, 24(22): 5710-5723.
- 39. Xu X, Yang Y, Liu X, et al. Nfe2l2/keap1 mutations correlate with higher tumor mutational burden value/PD‐l1 expression and potentiate improved clinical outcome with immunotherapy. The Oncol, 2020, 25(6): e955-e963.
- 40. Mascaux C, Iannino N, Martin B, et al. The role of RAS oncogene in survival of patients with lung cancer: A systematic review of the literature with meta-analysis. Br J Cancer, 2005, 92(1): 131-139.
- 41. Cascetta P, Marinello A, Lazzari C, et al. Kras in nsclc: State of the art and future perspectives. Cancers, 2022, 14(21): 5430.
- 42. Judd J, Abdel Karim N, Khan H, et al. Characterization of kras mutation subtypes in non–small cell lung cancer. Molecular cancer therapeutics, 2021, 20(12): 2577-2584.
- 43. Skoulidis F, Goldberg ME, Greenawalt DM, et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov, 2018, 8(7): 822-835.
- 44. Anagnostou V, Smith KN, Forde PM, et al. Evolution of neoantigen landscape during immune checkpoint blockade in non–small cell lung cancer. Cancer Discov, 2017, 7(3): 264-276.
- 45. Spicer J D, Cascone T, Wynes M W, et al. Neoadjuvant and adjuvant treatment for early-stage resectable non-small cell lung cancer (NSCLC): Consensus recommendations from the international association for the study of lung cancer (iaslc). J Thorac Oncol, 2024.
- 46. Gettinger S, Choi J, Hastings K, et al. Impaired HLA classⅠ antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov, 2017, 7: 1420-1435.
- 47. Peng W, Chen JQ, Liu C, et al. Loss of PTEN promotes resistance to T cell–mediated immunotherapy. Cancer Discov, 2016, 6(2): 202-216.
- 48. Bellucci R, Martin A, Bommarito D, et al. Interferon-γ-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to nk cells through upregulation of PD-l1 expression. Oncoimmunology, 2015, 4(6): e1008824.
- 49. Tang T, Huang X, Zhang G, et al. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct Target Ther., 2021, 6(1): 72.
- 50. Spranger S, Bao R, Gajewski T F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature, 2015, 523(7559): 231-235.
- 51. Attili I, Karachaliou N, Bonanno L, et al. STAT3 as a potential immunotherapy biomarker in oncogene-addicted non-small cell lung cancer. Ther Adv Med Oncol, 2018, 10: 1758835918763744.
- 52. Zhou X, Wang N, Zhang Y, et al. KAT2B is an immune infiltration-associated biomarker predicting prognosis and response to immunotherapy in non‐small cell lung cancer. Invest New Drugs, 2022, 40(1): 43-57.
- 53. Spranger S, Gajewski TF. Impact of oncogenic pathways on evasion of antitumour immune responses. Nature Reviews Cancer, 2018, 18(3): 139-147.
- 54. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer letters, 2017, 387: 61-68.
- 55. Gabrilovich D I, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol, 2012, 12(4): 253-268.
- 56. Meyer C, Cagnon L, Costa-Nunes CM, et al. Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol Immunother, 2014, 63(3): 247-57.
- 57. Wen T, Su C, Cheng X, et al. Circulating myeloid-derived suppressors cells correlate with clinicopathological characteristics and outcomes undergoing neoadjuvant chemoimmunotherapy in non-small cell lung cancer. Clinical and Translational Oncology, 2022: 1-11.
- 58. Kim S R, Chun S H, Kim J R, et al. The implications of clinical risk factors, car index, and compositional changes of immune cells on hyperprogressive disease in non-small cell lung cancer patients receiving immunotherapy. BMC Cancer, 2021, 21: 1-11.
- 59. Sedighzadeh SS, Khoshbin AP, Razi S, et al. A narrative review of tumor-associated macrophages in lung cancer: Regulation of macrophage polarization and therapeutic implications. Transl Lung Cancer Res, 2021, 10(4): 1889.
- 60. Xia Y, Rao L, Yao H, et al. Engineering macrophages for cancer immunotherapy and drug delivery. Advanced Materials, 2020, 32(40): 2002054.
- 61. Curiel TJ. Tregs and rethinking cancer immunotherapy. J Clin Invest, 2007, 117(5): 1167-1174.
- 62. Thommen D S, Koelzer V H, Herzig P, et al. A transcriptionally and functionally distinct pd-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with pd-1 blockade. Nature Med, 2018, 24(7): 994-1004.
- 63. Zappasodi R, Budhu S, Hellmann M D, et al. Non-conventional inhibitory cd4+ foxp3− pd-1hi t cells as a biomarker of immune checkpoint blockade activity. Cancer cell, 2018, 33(6): 1017-1032. e1017.
- 64. Kumagai S, Togashi Y, Kamada T, et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nature Immunol, 2020, 21(11): 1346-1358.
- 65. Han R, Zhang Y, Wang T, et al. Tumor immune microenvironment predicts the pathologic response of neoadjuvant chemoimmunotherapy in non–small‐cell lung cancer. Cancer Science, 2023, 114(6): 2569-2583.
- 66. Guo X, Zhang Y, Zheng L, et al. Global characterization of t cells in non-small-cell lung cancer by single-cell sequencing. Nature Med, 2018, 24(7): 978-985.
- 67. Chen X, Gao A, Zhang F, et al. ILT4 inhibition prevents tam-and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-pd-l1 therapy in NSCLC with EGFR activation. Theranostics, 2021, 11(7): 3392.
- 68. Sanmamed M F, Nie X, Desai SS, et al. A burned-out CD8+ T-cell subset expands in the tumor microenvironment and curbs cancer immunotherapy. Cancer Discov, 2021, 11(7): 1700-1715.
- 69. Gao Q, Wang S, Chen X, et al. Cancer-cell-secreted cxcl11 promoted CD8+ T cells infiltration through docetaxel-induced-release of hmgb1 in NSCLC. J Immunother Cancer, 2019, 7: 1-17.
- 70. Rizvi N A, Hellmann M D, Snyder A, et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science, 2015, 348(6230): 124-128.
- 71. Wu C-F, Fu JY, Yeh CJ, et al. Recurrence risk factors analysis for stageⅠnon-small cell lung cancer. Medicine, 2015, 94(32): e1337.
- 72. Renaud S, Falcoz P-E, Schaeffer M, et al. Prognostic value of the KRAS g12v mutation in 841 surgically resected caucasian lung adenocarcinoma cases. Br J Cancer, 2015, 113(8): 1206-1215.
- 73. Zhao Y, Varn FS, Cai G, et al. A p53-deficiency gene signature predicts recurrence risk of patients with early-stage lung adenocarcinoma. Cancer Epidemiol Biomarkers Prev, 2018, 27(1): 86-95.
- 74. Al-Alao B S, Gately K, Nicholson S, et al. Prognostic impact of vascular and lymphovascular invasion in early lung cancer. Asian Cardiovascular and Thoracic Annals, 2014, 22(1): 55-64.
- 75. Huang H, Wang T, Hu B, et al. Visceral pleural invasion remains a size-independent prognostic factor in stageⅠnon-small cell lung cancer. Ann Thorac Surg, 2015, 99(4): 1130-1139.
- 76. Nojiri T, Hamasaki T, Inoue M, et al. Long-term impact of postoperative complications on cancer recurrence following lung cancer surgery. Ann Surg Oncol, 2017, 24: 1135-1142.
- 77. Frankell A M, Dietzen M, Al Bakir M, et al. The evolution of lung cancer and impact of subclonal selection in tracerx. Nature, 2023, 616(7957): 525-533.
- 78. Jamal-Hanjani M, Wilson GA, Mcgranahan N, et al. Tracking the evolution of non–small-cell lung cancer. NEJM, 2017, 376(22): 2109-2121.
- 79. Caso R, Sanchez-Vega F, Tan KS, et al. The underlying tumor genomics of predominant histologic subtypes in lung adenocarcinoma. J Thorac Oncol, 2020, 15(12): 1844-1856.
- 80. Kadara H, Choi M, Zhang J, et al. Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up. Ann Oncol, 2017, 28(1): 75-82.
- 81. Schmid D, Sobottka-Brillout AB, Manzo M, et al. Tumor immune dynamics and long-term clinical outcome of stage Ⅲa NSCLC patients treated with neoadjuvant chemoimmunotherapy. 2024.
- 82. Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 keynote-158 study. Lancet Oncol, 2020, 21(10): 1353-1365.
- 83. Goldberg S B, Schalper KA, Gettinger SN, et al. Pembrolizumab for management of patients with nsclc and brain metastases: Long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial. Lancet Oncol, 2020, 21(5): 655-663.
- 84. Sun Q, Hong Z, Zhang C, et al. Immune checkpoint therapy for solid tumours: Clinical dilemmas and future trends. Signal Transduct Target Ther, 2023, 8(1): 320.
- 85. Yang H, Ma W, Sun B, et al. Smoking signature is superior to programmed death-ligand 1 expression in predicting pathological response to neoadjuvant immunotherapy in lung cancer patients. Transl Lung Cancer Res, 2021, 10(9): 3807.
- 86. Diem S, Schmid S, Krapf M, et al. Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer (NSCLC) treated with nivolumab. Lung cancer, 2017, 111: 176-181.
- 87. Mezquita L, Auclin E, Ferrara R, et al. Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non–small cell lung cancer. JAMA Oncol, 2018, 4(3): 351-357.
- 88. Kaira K, Ichiki Y, Imai H, et al. Potential predictors of the pathologic response after neoadjuvant chemoimmunotherapy in resectable non-small cell lung cancer: A narrative review. Translational Lung Cancer Research, 2024, 13(5): 1137.
- 89. Abbosh C, Frankell A M, Harrison T, et al. Tracking early lung cancer metastatic dissemination in tracerx using ctdna. Nature, 2023, 616(7957): 553-562.
- 90. Wu M, Huang Q, Xie Y, et al. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol, 2022, 15(1): 24.
- 91. Zhang H, Hu Y, Wu T, et al. Clinical characteristics and novel strategies of immune checkpoint inhibitor rechallenge therapy for non-small cell lung cancer: A comprehensive review. Front Immunol, 2024, 14: 1309055.
- 92. Wakelee H, Liberman M, Kato T, et al. Perioperative pembrolizumab for early-stage non–small-cell lung cancer. NEJM, 2023, 389(6): 491-503.
- 93. Yue D, Wang W, Liu H, et al. Lba58 pathological response to neoadjuvant tislelizumab (TIS) plus platinum-doublet (PTDB) chemotherapy (CT) in resectable stage Ⅱ-Ⅲa nsclc patients (PTS) in the phase Ⅲ (ph3) rationale-315 trial. AnnS Oncol, 2023, 34: S1299.