1. |
Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). Glob Heart, 2018, 13(4): 305-338.
|
2. |
World Health Organization. Cardiovascular diseases (CVDs). [2023-06-11] (2025-05-23).
|
3. |
国家心血管病中心, 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2024概要. 中国循环杂志, 2025, 40(6): 521-559.National Center for Cardiovascular Diseases, Writing Committee of China Cardiovascular Health and Disease Report. Report on cardiovascular health and diseases in China 2024: an updated summary. Chin Circ J, 2025, 40(6): 521-559.
|
4. |
Ibanez B, James S, Agewall S, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J, 2018, 39(2): 119-177.
|
5. |
Wang L, Wang Y, Jin F, et al. Risk prediction models for hospital mortality in general medical patients: a systematic review. J Gen Intern Med, 2023, 38(5): 1253-1265.
|
6. |
Zhang Y, Liu H, Huang Q, et al. Predictive value of machine learning for in-hospital mortality risk in acute myocardial infarction: a systematic review and meta-analysis. Int J Med Inform, 2025, 198: 105875.
|
7. |
Moons KGM, de Groot JAH, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med, 2014, 11(10): e1001744.
|
8. |
陈香萍, 张奕, 庄一渝, 等. PROBAST: 诊断或预后多因素预测模型研究偏倚风险的评估工具. 中国循证医学杂志, 2020, 20(6): 737-744.Chen XP, Zhang Y, Zhuang YY, et al. PROBAST: a tool for assessing risk of bias in the study of diagnostic or prognostic multi-factorial predictive models. Chin J Evid Based Med, 2020, 20(6): 737-744.
|
9. |
Goriki Y, Tanaka A, Nishihira K, et al. A novel predictive model for in-hospital mortality based on a combination of multiple blood variables in patients with ST-segment-elevation myocardial infarction. J Clin Med, 2020, 9(3): 782.
|
10. |
Aziz F, Malek S, Ibrahim KS, et al. Short- and long-term mortality prediction after an acute ST-elevation myocardial infarction (STEMI) in Asians: a machine learning approach. PLoS One, 2021, 16(8): e0254894.
|
11. |
Zhao J, Zhao P, Li C, et al. Optimized machine learning models to predict in-hospital mortality for patients with ST-segment elevation myocardial infarction. Ther Clin Risk Manag, 2021, 17: 951-961.
|
12. |
Liao T, Xu Q, Shi R, et al. A nomogram for predicting hospital mortality in intensive care unit patients with acute myocardial infarction. Int J Gen Med, 2021, 14: 5863-5877.
|
13. |
Ke J, Chen Y, Wang X, et al. Machine learning-based in-hospital mortality prediction models for patients with acute coronary syndrome. Am J Emerg Med, 2022, 53: 127-134.
|
14. |
Wang Y, Liu L, Li X, et al. Nomogram for predicting in-hospital mortality in patients with acute ST-elevation myocardial infarction complicated by cardiogenic shock after primary percutaneous coronary intervention. J Interv Cardiol, 2022, 2022: 8994106.
|
15. |
Wang Y, Wang W, Jia S, et al. Development of a nomogram for the prediction of in-hospital mortality in patients with acute ST-elevation myocardial infarction after primary percutaneous coronary intervention: a multicentre, retrospective, observational study in Hebei province, China. BMJ Open, 2022, 12(2): e056101.
|
16. |
Deng L, Zhao X, Su X, et al. Machine learning to predict no reflow and in-hospital mortality in patients with ST-segment elevation myocardial infarction that underwent primary percutaneous coronary intervention. BMC Med Inform Decis Mak, 2022, 22(1): 109.
|
17. |
Wang Y, Li C, Yuan M, et al. Development of a complete blood count with differential-based prediction model for in-hospital mortality among patients with acute myocardial infarction in the coronary care unit. Front Cardiovasc Med, 2022, 9: 1001356.
|
18. |
Li R, Shen L, Ma W, et al. Use of machine learning models to predict in-hospital mortality in patients with acute coronary syndrome. Clin Cardiol, 2023, 46(2): 184-194.
|
19. |
Oliveira M, Seringa J, Pinto FJ, et al. Machine learning prediction of mortality in acute myocardial infarction. BMC Med Inform Decis Mak, 2023, 23(1): 70.
|
20. |
Zhu X, Xie B, Chen Y, et al. Machine learning in the prediction of in-hospital mortality in patients with first acute myocardial infarction. Clin Chim Acta, 2024, 554: 117776.
|
21. |
Shakhgeldyan KI, Kuksin NS, Domzhalov IG, et al. Interpretable machine learning for in-hospital mortality risk prediction in patients with ST-elevation myocardial infarction after percutaneous coronary interventions. Comput Biol Med, 2024, 170: 107953.
|
22. |
Yang J, Li Y, Li X, et al. A machine learning model for predicting in-hospital mortality in Chinese patients with ST-segment elevation myocardial infarction: findings from the China myocardial infarction registry. J Med Internet Res, 2024, 26: e50067.
|
23. |
Yu F, Xu Y, Peng J, et al. Evaluation of a nomogram model for predicting in-hospital mortality risk in patients with acute ST-elevation myocardial infarction and acute heart failure post-PCI. Scand Cardiovasc J, 2024, 58(1): 2387001.
|
24. |
Zhang Q, Xu L, Xie Z, et al. Machine learning-based prediction of mortality in acute myocardial infarction with cardiogenic shock. Front Cardiovasc Med, 2024, 11: 1402503.
|
25. |
Xu BZ, Wang B, Chen JP, et al. Construction and validation of a personalized risk prediction model for in-hospital mortality in patients with acute myocardial infarction undergoing percutaneous coronary intervention. Clinics (Sao Paulo), 2025, 80: 100580.
|
26. |
Gawinski L, Milewska A, Marczak M, et al. Nomogram predicting in-hospital mortality in patients with myocardial infarction treated with primary coronary interventions based on logistic and angiographic predictors. Biomedicines, 2025, 13(3): 612.
|
27. |
王禹丹. STEMI患者PCI后院内死亡危险因素分析及风险预测模型构建. 河北医科大学, 2022.Wang YD. Analysis of risk factors and construction of risk prediction model for STEMI patients who died in hospital after PCI. Hebei Medical University, 2022.
|
28. |
张志宇. 多因素联合评估模型对心梗后心源性休克患者院内死亡的预测价值. 吉林大学, 2023.Zhang ZY. The value of multi-factor combined evaluation model in predicting hospital death in patients with cardiogenic shock after myocardial infarction. Jilin University, 2023.
|
29. |
赵鹏宇. 机器学习在急性心肌梗死诊疗中的应用研究. 天津大学, 2022.Zhao PY. Research on the application of machine learning in the diagnosis and treatment of acute myocardial infarction. Tianjin University, 2022.
|
30. |
孙雨可. 基于MIMIC-Ⅳ数据库对ICU病房急性心肌梗死患者院内死亡风险预测模型的构建与验证. 兰州大学, 2023.Sun YK. Construction and validation of in-hospital death risk prediction model for patients with acute myocardial infarction in ICU ward based on MIMIC-IV database. Lanzhou University, 2023.
|
31. |
贾吉, 陶四明. 基于血浆渗透压建立急性ST段抬高型心肌梗死重症患者发生院内死亡风险预测模型. 昆明医科大学学报, 2022, 43(12): 58-65.Jia J, Tao SM. Development of a plasma osmolality prediction model for the risk of in-hospital death in critically ill patients with acute ST-segment elevation myocardial infarction. J Kunming Med Univ, 2022, 43(12): 58-65.
|
32. |
李其华, 易秋艳, 徐广纳, 等. 急性ST段抬高型心肌梗死患者直接PCI术后院内死亡风险预测模型的建立和验证. 中国循证心血管医学杂志, 2022, 14(12): 1470-1475.Li QH, Yi QY, Xu GN, et al. Establishment and validation of prediction model of in-hospital mortality risk in patients with acute ST-segment elevation myocardial infarction after primary percutaneous coronary intervention. Chin J Evid Based Cardiovasc Med, 2022, 14(12): 1470-1475.
|
33. |
谈子恒. 急性ST段抬高型心肌梗死患者院内死亡预测模型的构建: 一项中国的多中心回顾性研究. 南昌大学, 2023.Tan ZH. Construction of a predictive model for in-hospital mortality in patients with acute ST-segment elevation myocardial infarction: a multicenter retrospective study in. Nanchang University, 2023.
|
34. |
张晔, 孙婷婷, 张海峰, 等. 急性心肌梗死合并心源性休克院内死亡的预测模型建立与验证. 中西医结合心脑血管病杂志, 2023, 21(24): 4570-4575.Zhang Y, Sun TT, Zhang HF, et al. Development and validation of a prediction model for in-hospital mortality in acute myocardial infarction with cardiogenic shock. Chin J Integr Med Cardio Cerebrovasc Dis, 2023, 21(24): 4570-4575.
|
35. |
李金滨, 全美玲, 李晓雪. 急性心肌梗死合并心源性休克发生院内死亡预测模型的建立. 中国循证心血管医学杂志, 2024, 16(3): 283-287.Li JB, Quan ML, Li XX. Development of a predictive model for in-hospital death in acute myocardial infarction combined with cardiogenic shock. Chin J Evid Based Cardiovasc Med, 2024, 16(3): 283-287.
|
36. |
周明英, 周丽珍, 罗文慧, 等. 急性心肌梗死患者死亡危险因素分析及预测模型建立. 现代实用医学, 2022, 34(10): 1349-1351,1402.Zhou MY, Zhou LZ, Luo WH, et al. Analysis of risk factors for mortality and construction of a prediction model in acute myocardial infarction patients. Mod Pract Med, 2022, 34(10): 1349-1351,1402.
|
37. |
张杰, 马礼坤, 张理想, 等. 急性心肌梗死患者院内死亡风险列线图预测模型的构建. 临床心血管病杂志, 2020, 36(4): 311-317.Zhang J, Ma LK, Zhang LX, et al. Construction of predictive model of in-hospital death risk in patients with acute myocardial infarction. J Clin Cardiol, 2020, 36(4): 311-317.
|
38. |
Carreras-Mora J, Vidal-Burdeus M, Rodriguez-Gonzalez C, et al. Killip scale reclassification according to lung ultrasound: Killip pLUS. Eur Heart J Acute Cardiovasc Care, 2024, 13(7): 566-569.
|
39. |
Abduljabbar AS, Fawzi HM. The association of neutrophil to lymphocyte ratio and other complete blood count parameters with global registry of acute coronary events risk score in patients with non-ST segment elevation - acute coronary syndrome: a single-center study. Med J Islam Repub Iran, 2024, 38: 109.
|
40. |
Li X, Qiao Y, Ruan L, et al. Stress hyperglycemia ratio as an independent predictor of acute kidney injury in critically ill patients with acute myocardial infarction: a retrospective U. S. cohort study. Ren Fail, 2025, 47(1): 2471018.
|
41. |
Jalaja PP, Kommineni D, Mishra A, et al. Predictors of mortality in acute myocardial infarction: insights from the healthcare cost and utilization project (HCUP) nationwide readmission database. Cureus, 2025, 17(5): e83675.
|
42. |
Zordok M, Buda KG, Etiwy M, et al. Comparative analysis of the DanGer shock trial to randomized cardiogenic shock trials and real-world registries. Cardiovasc Revasc Med, 2025, 48: 102-110.
|
43. |
Kunkel JB, Soholm H, Holle SLD, et al. Neurohormonal response is associated with mortality in women with ST-elevation myocardial infarction. Eur Heart J Acute Cardiovasc Care, 2025, 14(1): 31-39.
|
44. |
Elbarbary M, Shalaby HK, Elshokafy SM, et al. Gender differences in presentation, management, and outcomes among Egyptian patients with acute coronary syndrome: a single-centre registry. BMC Cardiovasc Disord, 2024, 24(1): 364.
|
45. |
Krefting J, Graesser C, Novacek S, et al. Sex-specific outcomes in myocardial infarction: a dual-cohort analysis using clinical and real-world data. Clin Res Cardiol, 2025, 114(2): 145-156.
|
46. |
Li N, Chen R, Li J, et al. Prognostic significance of serial N-terminal pro-B-type natriuretic peptide levels in patients with acute myocardial infarction: a prospective study. Am Heart J, 2023, 262: 90-99.
|
47. |
Chen RZ, Liu C, Zhou P, et al. Associations between postprocedural D-dimer, hs-CRP, LDL-C levels and prognosis of acute myocardial infarction patients treated by percutaneous coronary intervention. Zhonghua Xin Xue Guan Bing Za Zhi, 2020, 48(5): 359-366.
|
48. |
Xie P, Wang H, Xiao J, et al. Development and validation of an explainable deep learning model to predict in-hospital mortality for patients with acute myocardial infarction: algorithm development and validation study. J Med Internet Res, 2024, 26: e49848.
|
49. |
Zhang X, Wang X, Xu L, et al. The predictive value of machine learning for mortality risk in patients with acute coronary syndromes: a systematic review and meta-analysis. Eur J Med Res, 2023, 28(1): 451.
|
50. |
Buchan TA, Malik A, Chan C, et al. Predictive models for cardiovascular and kidney outcomes in patients with type 2 diabetes: systematic review and meta-analyses. Heart, 2021, 107(24): 1962-1970.
|
51. |
Viswan V, Shaffi N, Mahmud M. Interpreting artificial intelligence models: a systematic review on the application of LIME and SHAP in Alzheimer's disease detection. Brain Inform, 2024, 11(1): 10.
|
52. |
Essat M, Goodacre S, Pandor A, et al. Diagnostic accuracy of D-dimer for acute aortic syndromes: systematic review and meta-analysis. Ann Emerg Med, 2024, 84(4): 409-421.
|