1. |
Springer F, Ehehalt S, Sommer J, et al. Assessment of relevant hepatic steatosis in obese adolescents by rapid fat-selective GRE imaging with spatial-spectral excitation: a quantitative comparison with spectroscopic findings. Eur Radiol, 2011, 21(4): 816-822.
|
2. |
Reeder SB, Cruite I, Hamilton G, et al. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging, 2011, 34(4): spcone.
|
3. |
赵黎明, 宋彬, 陈光文, 等. 肝脏脂肪含量MRI定量诊断与病理对照研究. 中国普外基础与临床杂志, 2011, 18(6): 666-671.0.
|
4. |
Thomas EL, Hamilton G, Patel N, et al. Hepatic triglyceride content and its relation to body adiposity: a magnetic resonance imaging and proton magnetic resonance spectroscopy study. Gut, 2005, 54(1): 122-127.
|
5. |
Dixon WT. Simple proton spectroscopic imaging. Radiology, 1984, 153(1): 189-194.
|
6. |
Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med, 1991, 18(2): 371-383.
|
7. |
Reeder SB, Pineda AR, Wen Z, et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med, 2005, 54(3): 636-644.
|
8. |
范建高, 曾民德. 脂肪肝的研究进展. 胃肠病学和肝病学杂志, 1999, 8(2): 149-160.0.
|
9. |
Leiber LM, Boursier J, Michalak S, et al. MRI versus histological methods for time course monitoring of steatosis amount in a murine model of NAFLD. Diagn Interv Imaging, 2015, 96(9): 915-922.
|
10. |
Tang A, Tan J, Sun M, et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology, 2013, 267(2): 422-431.
|
11. |
Noureddin M, Lam J, Peterson MR, et al. Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials. Hepatology, 2013, 58(6): 1930-1940.
|
12. |
Szczepaniak LS, Nurenberg P, Leonard D, et al. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab, 2005, 288(2): E462-E468.
|
13. |
Idilman IS, Aniktar H, Idilman R, et al. Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology, 2013, 267(3): 767-775.
|
14. |
Sumida Y, Nakajima A, Itoh Y. Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol, 2014, 20(2): 475-485.
|
15. |
Siripongsakun S, Lee JK, Raman SS, et al. MRI detection of intratumoral fat in hepatocellular carcinoma: potential biomarker for a more favorable prognosis. AJR Am J Roentgenol, 2012, 199(5): 1018-1025.
|
16. |
Barth BK, Fischer MA, Kambakamba P, et al. Liver-fat and liver-function indices derived from Gd-EOB-DTPA-enhanced liver MRI for prediction of future liver remnant growth after portal vein occlusion. Eur J Radiol, 2016, 85(4): 843-849.
|
17. |
Hu HH, Kim HW, Nayak KS, et al. Comparison of fat-water MRI and single-voxel MRS in the assessment of hepatic and pancreatic fat fractions in humans. Obesity (Silver Spring), 2010, 18(4): 841-847.
|
18. |
Li J, Xie Y, Yuan F, et al. Noninvasive quantification of pancreatic fat in healthy male population using chemical shift magnetic resonance imaging: effect of aging on pancreatic fat content. Pancreas, 2011, 40(2): 295-299.
|
19. |
Kühn JP, Berthold F, Mayerle J, et al. Pancreatic steatosis demonstrated at MR imaging in the general population: clinical relevance. Radiology, 2015, 276(1): 129-136.
|
20. |
Idilman IS, Tuzun A, Savas B, et al. Quantification of liver, pancreas, kidney, and vertebral body MRI-PDFF in non-alcoholic fatty liver disease. Abdom Imaging, 2015, 40(6): 1512-1519.
|
21. |
Kim HJ, Byun JH, Park SH, et al. Focal fatty replacement of the pancreas: usefulness of chemical shift MRI. AJR Am J Roentgenol, 2007, 188(2): 429-432.
|
22. |
Heni M, Machann J, Staiger H, et al. Pancreatic fat is negatively associated with insulin secretion in individuals with impaired fasting glucose and/or impaired glucose tolerance: a nuclear magnetic resonance study. Diabetes Metab Res Rev, 2010, 26(3): 200-205.
|
23. |
Maggio AB1, Mueller P, Wacker J, et al. Increased pancreatic fat fraction is present in obese adolescents with metabolic syndrome. J Pediatr Gastroenterol Nutr, 2012, 54(6): 720-726.
|
24. |
Cohen M, Syme C, Deforest M, et al. Ectopic fat in youth: the contribution of hepatic and pancreatic fat to metabolic disturbances. Obesity (Silver Spring), 2014, 22(5): 1280-1286.
|
25. |
Dong Z, Luo Y, Cai H, et al. Noninvasive fat quantification of the liver and pancreas may provide potential biomarkers of impaired glucose tolerance and type 2 diabetes. Medicine (Baltimore), 2016, 95(23): e3858.
|
26. |
Lee Y, Lingvay I, Szczepaniak LS, et al. Pancreatic steatosis: harbinger of type 2 diabetes in obese rodents. Int J Obes (Lond), 2010, 34(2): 396-400.
|
27. |
Pacifico L, Di Martino M, Anania C, et al. Pancreatic fat and β-cell function in overweight/obese children with nonalcoholic fatty liver disease. World J Gastroenterol, 2015, 21(15): 4688-4695.
|
28. |
van der Zijl NJ, Goossens GH, Moors CC, et al. Ectopic fat storage in the pancreas, liver, and abdominal fat depots: impact on β-cell function in individuals with impaired glucose metabolism. J Clin Endocrinol Metab, 2011, 96(2): 459-467.
|
29. |
Saisho Y, Butler AE, Meier JJ, et al. Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin Anat, 2007, 20(8): 933-942.
|
30. |
Murakami R, Saisho Y, Watanabe Y, et al. Pancreas fat and beta cell mass in humans with and without diabetes: An analysis in the Japanese population. J Clin Endocrinol Metab, 2017 Jun 14. doi: 10.1210/jc.2017-00828.[Epub ahead of print].
|
31. |
Lee SE, Jang JY, Lim CS, et al. Measurement of pancreatic fat by magnetic resonance imaging: predicting the occurrence of pancreatic fistula after pancreatoduodenectomy. Ann Surg, 2010, 251(5): 932-936.
|
32. |
Marin D, Soher BJ, Dale BM, et al. Characterization of adrenal lesions: comparison of 2D and 3D dual gradient-echo MR imaging at 3 T—preliminary results. Radiology, 2010, 254(1): 179-187.
|
33. |
Ramalho M, de Campos RO, Heredia V, et al. Characterization of adrenal lesions with 1.5-T MRI: preliminary observations on comparison of three in-phase and out-of-phase gradient-echo techniques. AJR Am J Roentgenol, 2011, 197(2): 415-423.
|
34. |
Meng X, Chen X, Shen Y, et al. Proton-density fat fraction measurement: A viable quantitative biomarker for differentiating adrenal adenomas from nonadenomas. Eur J Radiol, 2017, 86: 112-118.
|
35. |
Woo S, Cho JY, Kim SY, et al. Adrenal adenoma and metastasis from clear cell renal cell carcinoma: can they be differentiated using standard MR techniques? Acta Radiol, 2014, 55(9): 1120-1128.
|
36. |
Kim JK, Kim SH, Jang YJ, et al. Renal angiomyolipoma with minimal fat: differentiation from other neoplasms at double-echo chemical shift FLASH MR imaging. Radiology, 2006, 239(1): 174-180.
|
37. |
Sasiwimonphan K, Takahashi N, Leibovich BC, et al. Small (<4 cm) renal mass: differentiation of angiomyolipoma without visible fat from renal cell carcinoma utilizing MR imaging. Radiology, 2012, 263(1): 160-168.
|
38. |
Dillon RC, Friedman AC, Miller FH. MR signal intensity calculations are not reliable for differentiating renal cell carcinoma from lipid poor angiomyolipoma. Radiology, 2010, 257(1): 299-300.
|
39. |
Jeong CJ, Park BK, Park JJ, et al. Unenhanced CT and MRI parameters that can be used to reliably predict fat-invisible angiomyolipoma. AJR Am J Roentgenol, 2016, 206(2): 340-347.
|
40. |
Song S, Park BK, Park JJ. New radiologic classification of renal angiomyolipomas. Eur J Radiol, 2016, 85(10): 1835-1842.
|