1. |
Ünal E, İdilman İS, Akata D, et al. Microvascular invasion in hepatocellular carcinoma. Diagn Interv Radiol, 2016, 22(2): 125-132.
|
2. |
Sumie S, Nakashima O, Okuda K, et al. The significance of classifying microvascular invasion in patients with hepatocellular carcinoma. Ann Surg Oncol, 2014, 21(3): 1002-1009.
|
3. |
王家臣, 牛蕾, 段崇锋, 等. 肝细胞肝癌微血管侵犯的 MRI 研究. 医学影像学杂志, 2018, 28(6): 971-974.
|
4. |
Schlichtemeier SM, Pang TC, Williams NE, et al. A pre-operative clinical model to predict microvascular invasion and long-term outcome after resection of hepatocellular cancer: The Australian experience. Eur J Surg Oncol, 2016, 42(10): 1576-1583.
|
5. |
Weissleder R, Mahmood U. Molecular imaging. Radiology, 2001, 219(2): 316-333.
|
6. |
Ni DL, Zhang jw, Bu WB, et al. Dual-targeting upconversion nanoprobes across the blood-brain barrier for magnetic resonance/fluorescence imaging of intracranial glioblastoma. ACS Nano, 2014, 8(2): 1231-1242.
|
7. |
Mi P, Kokuryo D, Cabral H, et al. A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nat Nanotechnol, 2016, 11(8): 724-730.
|
8. |
Sun CC, Qu XJ, Gao ZH. Integrins: players in cancer progression and targets in cancer therapy. Anticancer Drugs, 2014, 25(10): 1107-1121.
|
9. |
Salvatore A, Montis C, Berti D, et al. Multifunctional magnetoliposomes for sequential controlled Release. ACS Nano, 2016, 10(8): 7749-7760.
|
10. |
Choi JY, Lee JM, Sirlin CB. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: partⅡ. Extracellular agents, hepatobiliary agents, and ancillary imaging features. Radiology, 2014, 273(1): 30-50.
|
11. |
Runge VM. Safety of the gadolinium-based contrast agents for magnetic resonance imaging, focusing in part on their accumulation in the brain and especially the dentate nucleus. Invest Radiol, 2016, 51(5): 273-279.
|
12. |
Lee S, Kim SH, Lee JE, et al. Preoperative gadoxetic acid-enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma. J Hepatol, 2017, 67(3): 526-534.
|
13. |
Ahn SY, Lee JM, Joo I, et al. Prediction of microvascular invasion of hepatocellular carcinoma using gadoxetic acid-enhanced MR and (18)F-FDG PET/CT. Abdom Imaging, 2015, 40(4): 843-851.
|
14. |
徐萍, 黄梦琪, 廖冰, 等. Gd-EOB-DTPA MRI 动态增强预测孤立性肝细胞癌微血管侵犯的单因素及多因素回归分析. 影像诊断与介入放射学, 2017, 26(1): 31-36.
|
15. |
刘曦娇, 唐鹤菡, 宋彬, 等. 钆塞酸二钠增强 MRI 肝胆期信号与肝细胞肝癌分化程度的关系. 中国普外基础与临床杂志, 2014, 21(12): 1583-1586.
|
16. |
张志敏, 谢冬敏, 许映斌, 等. 超声造影在肝细胞癌病理预后因素分析中的应用. 中国医学创新, 2016, 13(17): 66-69.
|
17. |
Zhou Z, Han Z, Lu ZR. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging. Biomaterials, 2016, 85: 168-179.
|
18. |
Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 1986, 161(2): 401-407.
|
19. |
白婷婷, 边杰. 钆塞酸二钠增强 MRI 与 IVIM-DWI 在肝细胞癌微血管侵犯诊断中的价值研究. 大连医科大学, 2018.
|
20. |
宋琼, 曾蒙苏. MR 非增强与增强灌注成像评估肝癌微循环功能状态的价值研究. 复旦大学, 2013.
|
21. |
Lemke A, Stieltjes B, Schad LR, et al. Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn Reson Imaging, 2011, 29(6): 766-776.
|
22. |
孔源, 李文美. 磁共振动态增强成像在原发性肝癌诊断的应用研究. 中国临床新医学, 2016, 9(5): 387-390.
|
23. |
Lei Z, Li J, Wu D, et al. Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma within the Milan criteria. JAMA Surg, 2016, 151(4): 356-363.
|
24. |
Poté N, Cauchy F, Albuquerque M, et al. Performance of PIVKA for early hepatocellular carcinoma diagnosis and prediction of microvascular invasion. J Hepatol, 2015, 62(4): 848-854.
|
25. |
李文柱, 苏丹柯. 能谱 CT 预测肝细胞癌微血管侵犯的可行性研究. 广西医科大学, 2016.
|
26. |
Watson EC, Grant ZL, Coultas L. Endothelial cell apoptosis in angiogenesis and vessel regression. Cell Mol Life Sci, 2017, 74(24): 4387-4403.
|
27. |
Liu CH, Ren J, Liu CM, et al. Intracellular gene transcription factor protein-guided MRI by DNA aptamers. FASEB J, 2014, 28(1): 464-473.
|
28. |
Upheber S, Karle A, Miller J, et al. Alternative splicing of KAI1 abrogates its tumor-suppressive effects on integrin αvβ3-mediated ovarian cancer biology. Cell Signal, 2015, 27(3): 652-662.
|
29. |
Zhang N, Cai X, Gao W, et al. A multifunctional theranostic nanoagent for dual-mode image-guided HIFU/chemo-synergistic cancer therapy. Theranostics, 2016, 6(3): 404-417.
|
30. |
Zhou Z, Wu X, Kresak A, et al. Peptide targeted tripod macrocyclic Gd (Ⅲ) chelates for cancer molecular MRI. Biomaterials, 2013, 34(31): 7683-7693.
|
31. |
Lei Y, Hamada Y, Li J, et al. Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression. J Control Release, 2016, 232: 131-142.
|
32. |
Zhou Y, Gao JB, Xu H, et al. Evaluation of neovascularization with spectral computed tomography in a rabbit VX2 liver model: a comparison with real-time contrast-enhanced ultrasound and molecular biological findings. Br J Radiol, 2015, 88(1055): 20140548.
|
33. |
Hirokawa F, Hayashi M, Miyamoto Y, et al. Outcomes and predictors of microvascular invasion of solitary hepatocellular carcinoma. Hepatol Res, 2014, 44(8): 846-853.
|
34. |
李迪, 肖喜刚. 原发性小肝癌微血管侵犯的宝石能谱 CT 分析. 检验医学与临床, 2018, 15(5): 605-607, 610.
|
35. |
Hu S, Huang W, Chen Y, et al. Spectral CT evaluation of interstitial brachytherapy in pancreatic carcinoma xenografts: preliminary animal experience. Eur Radiol, 2014, 24(9): 2167-2173.
|