1. |
Kitahara CM, Sosa JA. The changing incidence of thyroid cancer. Nat Rev Endocrinol, 2016, 12(11): 646-653.
|
2. |
Zheng H, Wang M, Jiang L, et al. BRAF-activated long noncoding RNA modulates papillary thyroid carcinoma cell proliferation through regulating thyroid stimulating hormone receptor. Cancer Res Treat, 2016, 48(2): 698-707.
|
3. |
Gong L, Chen P, Liu X, et al. Expressions of D2-40, CK19, galectin-3, VEGF and EGFR in papillary thyroid carcinoma. Gland Surg, 2012, 1(1): 25-32.
|
4. |
Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid, 2016, 26(1): 1-133.
|
5. |
Goto R, Hirota Y, Aruga T, et al. The number of FoxP3-positive tumor-infiltrating lymphocytes in patients with synchronous bilateral breast cancer. Breast Cancer, 2020, 27(4): 586-593.
|
6. |
Ma K, Li X, Lv J, et al. Correlations between CD4+ FoxP3+ Treg and expression of FoxM1 and Ki-67 in gastric cancer patients. Asia Pac J Clin Oncol, 2021, 17(2): e63-e69.
|
7. |
Wang R, Huang K. CCL11 increases the proportion of CD4+CD25+Foxp3+ Treg cells and the production of IL-2 and TGF-β by CD4+ T cells via the STAT5 signaling pathway. Mol Med Rep, 2020, 21(6): 2522-2532.
|
8. |
Wang X, Lang M, Zhao T, et al. Cancer-FOXP3 directly activated CCL5 to recruit FOXP3+ Treg cells in pancreatic ductal adenocarcinoma. Oncogene, 2017, 36(21): 3048-3058.
|
9. |
Zhang H, Zhang S. The expression of Foxp3 and TLR4 in cervical cancer: association with immune escape and clinical pathology. Arch Gynecol Obstet, 2017, 295(3): 705-712.
|
10. |
Gao S, Wang Y, Wang M, et al. MicroRNA-155, induced by FOXP3 through transcriptional repression of BRCA1, is associated with tumor initiation in human breast cancer. Oncotarget, 2017, 8(25): 41451-41464.
|
11. |
Li F, Sun Y, Huang J, et al. CD4/CD8+ T cells, DC subsets, Foxp3, and IDO expression are predictive indictors of gastric cancer prognosis. Cancer Med, 2019, 8(17): 7330-7344.
|
12. |
Chen Y, Qi X, Bian C, et al. The association of FOXP3 gene polymorphisms with cancer susceptibility: a comprehensive systemic review and meta-analysis. Biosci Rep, 2019, 39(3): BSR20181809.
|
13. |
杨晓燕, 郭永, 贾睿博, 等. FoxP3在甲状腺乳头状癌中的表达及与预后的相关性. 安徽医学, 2017, 38(4): 456-459.
|
14. |
Amin MB, Edge S, Greene F, et al. 2017 AJCC Cancer Staging Manual. Eighth ed. New York: Springer, 2017: 55-67.
|
15. |
Rotte A, Bhandaru M, Cheng Y, et al. Decreased expression of nuclear p300 is associated with disease progression and worse prognosis of melanoma patients. PLoS One, 2013, 8(9): e75405.
|
16. |
中华医学会内分泌学分会, 中华医学会外科学分会, 中国抗癌协会头颈肿瘤专业委员会, 等. 甲状腺结节和分化型甲状腺癌诊治指南. 中国肿瘤临床, 2012, 39(17): 1249-1272.
|
17. |
Schmidt Jensen J, Grønhøj C, Mirian C, et al. Incidence and survival of thyroid cancer in children, adolescents, and young adults in denmark: a nationwide study from 1980 to 2014. Thyroid, 2018, 28(9): 1128-1133.
|
18. |
Ahmadi S, Gonzalez JM, Talbott M, et al. Patient preferences around extent of surgery in low-risk thyroid cancer: a discrete choice experiment. Thyroid, 2020, 30(7): 1044-1052.
|
19. |
Coca-Pelaz A, Shah JP, Hernandez-Prera JC, et al. Papillary thyroid cancer-aggressive variants and impact on management: a narrative review. Adv Ther, 2020, 37(7): 3112-3128.
|
20. |
Rahman ST, McLeod DSA, Pandeya N, et al. Understanding pathways to the diagnosis of thyroid cancer: are there ways we can reduce over-diagnosis? Thyroid, 2019, 29(3): 341-348.
|
21. |
Cavalleri T, Bianchi P, Basso G, et al. Combined low densities of FoxP3+ and CD3+ tumor-infiltrating lymphocytes identify stage Ⅱ colorectal cancer at high risk of progression. Cancer Immunol Res, 2019, 7(5): 751-758.
|
22. |
Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci, 2019, 110(7): 2080-2089.
|
23. |
Mohamed SY, Ibrahim TR, Elbasateeny SS, et al. Clinico-pathological characterization and prognostic implication of FOXP3 and CK19 expression in papillary thyroid carcinoma and concomitant Hashimoto's thyroiditis. Sci Rep, 2020, 10(1): 10651.
|
24. |
赵水英, 秦贵军, 李志臻, 等. 甲状腺乳头状癌组织中Foxp3的表达. 郑州大学学报(医学版), 2021, 56(2): 246-249.
|
25. |
Chu R, Liu SY, Vlantis AC, et al. Inhibition of Foxp3 in cancer cells induces apoptosis of thyroid cancer cells. Mol Cell Endocrinol, 2015, 399: 228-234.
|
26. |
Jaber T, Waguespack SG, Cabanillas ME, et al. Targeted therapy in advanced thyroid cancer to resensitize tumors to radioactive iodine. J Clin Endocrinol Metab, 2018, 103(10): 3698-3705.
|
27. |
Rothenberg SM, McFadden DG, Palmer EL, et al. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin Cancer Res, 2015, 21(5): 1028-1035.
|
28. |
Taïeb D, Jacob T, Zotian E, et al. Lack of efficacy of recombinant human thyrotropin versus thyroid hormone withdrawal for radioiodine therapy imaging in a patient with differentiated thyroid carcinoma lung metastases. Thyroid, 2004, 14(6): 465-467.
|
29. |
Ma S, Wang Q, Ma X, et al. FoxP3 in papillary thyroid carcinoma induces NIS repression through activation of the TGF-β1/Smad signaling pathway. Tumour Biol, 2016, 37(1): 989-998.
|