1. |
Bundgaard-Nielsen C, Baandrup UT, Nielsen LP, et al. The presence of bacteria varies between colorectal adenocarcinomas, precursor lesions and non-malignant tissue. BMC Cancer, 2019, 19(1): 399. doi: 10.1186/s12885-019-5571-y.
|
2. |
Zhang Y, Liu H, Li L, et al. Cholecystectomy can increase the risk of colorectal cancer: A meta-analysis of 10 cohort studies. PLoS One, 2017, 12(8): e0181852. doi: 10.1371/journal.pone.0181852.
|
3. |
Lopetuso LR, Petito V, Graziani C, et al. Gut microbiota in health, diverticular disease, irritable bowel syndrome, and inflammatory bowel diseases: time for microbial marker of gastrointestinal disorders. Dig Dis, 2018, 36(1): 56-65.
|
4. |
唐刚, 杜怡, 袁伟杰. 慢性肾脏病状态下肠道菌群失调对免疫及代谢的影响. 中华肾脏病杂志, 2020, 36(11): 881-884.
|
5. |
叶巧园, 丁元林, 朱坚, 等. 基于16S rDNA测序的皮脂溢出患者肠道菌群分析. 广东医科大学学报, 2021, 39(4): 389-394.
|
6. |
Wong SH, Zhao L, Zhang X, et al. Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology, 2017, 153(6): 1621-1633.
|
7. |
Jobin C. Human intestinal microbiota and colorectal cancer: moving beyond associative studies. Gastroenterology, 2017, 153(6): 1475-1478.
|
8. |
Wang T, Cai G, Qiu Y, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J, 2012, 6(2): 320-329.
|
9. |
Niccolai E, Russo E, Baldi S, et al. Significant and conflicting correlation of IL-9 with prevotella and bacteroides in human colorectal cancer. Front Immunol, 2021, 11: 573158. doi: 10.3389/fimmu.2020.573158.
|
10. |
Yang J, Li D, Yang Z, et al. Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families. Gut Microbes, 2020, 11(4): 918-929.
|
11. |
Wu T, Zhang Z, Liu B, et al. Gut microbiota dysbiosis and bacterial community assembly associated with cholesterol gallstones in large-scale study. BMC Genomics, 2013, 14: 669. doi: 10.1186/1471-2164-14-669.
|
12. |
Keren N, Konikoff FM, Paitan Y, et al. Interactions between the intestinal microbiota and bile acids in gallstones patients. Environ Microbiol Rep, 2015, 7(6): 874-880.
|
13. |
Wang Q, Hao C, Yao W, et al. Intestinal flora imbalance affects bile acid metabolism and is associated with gallstone formation. BMC Gastroenterol, 2020, 20(1): 59. doi: 10.1186/s12876-020-01195-1.
|
14. |
臧晓明, 景彩, 肖宁, 等. 基于16S rDNA基因测序技术分析不同身体质量指数人群的肠道菌群结构差异. 中华中医药杂志, 2021, 36(1): 451-455.
|
15. |
Angelberger S, Reinisch W, Makristathis A, et al. Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation. Am J Gastroenterol, 2013, 108(10): 1620-1630.
|
16. |
Cao H, Xu M, Dong W, et al. Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. Int J Cancer, 2017, 140(11): 2545-2556.
|
17. |
Ohigashi S, Sudo K, Kobayashi D, et al. Changes of the intestinal microbiota, short chain fatty acids, and fecal pH in patients with colorectal cancer. Dig Dis Sci, 2013, 58(6): 1717-1726.
|
18. |
Sánchez-Alcoholado L, Ramos-Molina B, Otero A, et al. The role of the gut microbiome in colorectal cancer development and therapy response. Cancers (Basel), 2020, 12(6): 1406. doi: 10.3390/cancers12061406.
|
19. |
Hajjar R, Richard CS, Santos MM. The role of butyrate in surgical and oncological outcomes in colorectal cancer. Am J Physiol Gastrointest Liver Physiol, 2021, 320(4): G601-G608.
|
20. |
Huang N, Katz JP, Martin DR, et al. Inhibition of IL-8 gene expression in Caco-2 cells by compounds which induce histone hyperacetylation. Cytokine, 1997, 9(1): 27-36.
|
21. |
Stempelj M, Kedinger M, Augenlicht L, et al. Essential role of the JAK/STAT1 signaling pathway in the expression of inducible nitric-oxide synthase in intestinal epithelial cells and its regulation by butyrate. J Biol Chem, 2007, 282(13): 9797-9804.
|
22. |
张冬冬. 胆囊切除术后肠道菌群改变与结直肠癌的关系. 太原: 山西医科大学, 2020.
|
23. |
Chen YK, Yeh JH, Lin CL, et al. Cancer risk in patients with cholelithiasis and after cholecystectomy: a nationwide cohort study. J Gastroenterol, 2014, 49(5): 923-931.
|
24. |
翟晓, 杨芸, 王文学, 等. 胆囊切除术与结直肠癌发病的关系. 中华消化杂志, 2019, 39(10): 715-717.
|
25. |
Grigor’eva I, Romanova T, Naumova N, et al. Gut microbiome in a russian cohort of pre- and post-cholecystectomy female patients. J Pers Med, 2021, 11(4): 294. doi: 10.3390/jpm11040294.
|
26. |
Wang W, Wang J, Li J, et al. Cholecystectomy damages aging-associated intestinal microbiota construction. front microbiol, 2018, 9: 1402. doi: 10.3389/fmicb.2018.01402.
|
27. |
Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev, 2007, 20(4): 593-621.
|
28. |
Kuwahara T, Yamashita A, Hirakawa H, et al. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci U S A, 2004, 101(41): 14919-14924.
|
29. |
Sóki J, Gal M, Brazier JS, et al. Molecular investigation of genetic elements contributing to metronidazole resistance in Bacteroides strains. J Antimicrob Chemother, 2006, 57(2): 212-220.
|
30. |
Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch Microbiol, 2018, 200(4): 525-540.
|
31. |
Hillman ET, Lu H, Yao T, et al. Microbial ecology along the gastrointestinal tract. Microbes Environ, 2017, 32(4): 300-313.
|
32. |
Luo K, Zhang Y, Xv C, et al. Fusobacterium nucleatum, the communication with colorectal cancer. Biomed Pharmacother, 2019, 116: 108988. doi: 10.1016/j.biopha.2019.108988.
|
33. |
Zhou Z, Chen J, Yao H, et al. Fusobacterium and colorectal cancer. Front Oncol, 2018, 8: 371. doi: 10.3389/fonc.2018.00371.
|