1. |
Cao J, Xu H, Li W, et al. Nutritional assessment and risk factors associated to malnutrition in patients with esophageal cancer. Curr Probl Cancer, 2021, 45(1): 100638.
|
2. |
Gong X, Zheng B, Xu G, et al. Application of machine learning approaches to predict the 5-year survival status of patients with esophageal cancer. J Thorac Dis, 2021, 13(11): 6240-6251.
|
3. |
Verma AA, Murray J, Greiner R, et al. Implementing machine learning in medicine. CMAJ, 2021, 193(34): E1351-E1357.
|
4. |
Deo RC. Machine learning in medicine. Circulation, 2015, 132(20): 1920-1930.
|
5. |
Lynch CM, Abdollahi B, Fuqua JD, et al. Prediction of lung cancer patient survival via supervised machine learning classification techniques. Int J Med Inform, 2017, 108: 1-8.
|
6. |
Zhou CM, Xue Q, Wang Y, et al. Machine learning to predict the cancer-specific mortality of patients with primary non-metastatic invasive breast cancer. Surg Today, 2021, 51(5): 756-763.
|
7. |
Ji GW, Fan Y, Sun DW, et al. Machine learning to improve prognosis prediction of early hepatocellular carcinoma after surgical resection. J Hepatocell Carcinoma, 2021, 8: 913-923.
|
8. |
Christopherson KM, Das P, Berlind C, et al. A machine learning model approach to risk-stratify patients with gastrointestinal cancer for hospitalization and mortality outcomes. Int J Radiat Oncol Biol Phys, 2021, 111(1): 135-142.
|
9. |
Liu X, Guo W, Shi X, et al. Construction and verification of prognostic nomogram for early-onset esophageal cancer. Bosn J Basic Med Sci, 2021, 21(6): 760-772.
|
10. |
Tang X, Zhou X, Li Y, et al. A novel nomogram and risk classification system predicting the cancer-specific survival of patients with initially diagnosed metastatic esophageal cancer: A SEER-based study. Ann Surg Oncol, 2019, 26(2): 321-328.
|
11. |
Moncada-Torres A, van Maaren MC, Hendriks MP, et al. Explainable machine learning can outperform Cox regression predictions and provide insights in breast cancer survival. Sci Rep, 2021, 11(1): 6968.
|
12. |
Buch VH, Ahmed I, Maruthappu M. Artificial intelligence in medicine: Current trends and future possibilities. Br J Gen Pract, 2018, 68(668): 143-144.
|
13. |
Domper Arnal MJ, Ferrández Arenas Á, Lanas Arbeloa Á. Esophageal cancer: Risk factors, screening and endoscopic treatment in Western and Eastern countries. World J Gastroenterol, 2015, 21(26): 7933-7943.
|
14. |
Li S, Chen H, Man J, et al. Changing trends in the disease burden of esophageal cancer in China from 1990 to 2017 and its predicted level in 25 years. Cancer Med, 2021, 10(5): 1889-1899.
|
15. |
Petrelli F, Ghidini A, Cabiddu M, et al. Effects of hypertension on cancer survival: A meta-analysis. Eur J Clin Invest, 2021, 51(6): e13493.
|
16. |
Gao A, Wang L, Li J, et al. Prognostic value of perineural invasion in esophageal and esophagogastric junction carcinoma: A meta-analysis. Dis Markers, 2016, 2016: 7340180.
|
17. |
Shahbaz Sarwar CM, Luketich JD, Landreneau RJ, et al. Esophageal cancer: An update. Int J Surg, 2010, 8(6): 417-422.
|
18. |
Yang J, Lu Z, Li L, et al. Relationship of lymphovascular invasion with lymph node metastasis and prognosis in superficial esophageal carcinoma: Systematic review and meta-analysis. BMC Cancer, 2020, 20(1): 176.
|
19. |
Gupta V, Coburn N, Kidane B, et al. Survival prediction tools for esophageal and gastroesophageal junction cancer: A systematic review. J Thorac Cardiovasc Surg, 2018, 156(2): 847-856.
|
20. |
Ji GW, Jiao CY, Xu ZG, et al. Development and validation of a gradient boosting machine to predict prognosis after liver resection for intrahepatic cholangiocarcinoma. BMC Cancer, 2022, 22(1): 258.
|
21. |
van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: A simulation study for predicting dichotomous endpoints. BMC Med Res Methodol, 2014, 14: 137.
|