1. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
黄理宾, 黄秋实, 杨烈. 全球及中国的结直肠癌流行病学特征及防治: 2022《全球癌症统计报告》解读. 中国普外基础与临床杂志, 2024, 31(5): 530-537.
|
3. |
Nguyen LH, Goel A, Chung DC. Pathways of colorectal carcinogenesis. Gastroenterology, 2020, 158(2): 291-302.
|
4. |
Baran B, Mert Ozupek N, Yerli Tetik N, et al. Difference between left-sided and right-sided colorectal cancer: A focused review of literature. Gastroenterology Res, 2018, 11(4): 264-273.
|
5. |
Løberg M, Holme Ø, Bretthauer M, et al. Colorectal adenomas, surveillance, and cancer. Lancet Oncol, 2017, 18(8): e427. doi: 10.1016/S1470-2045(17)30473-4.
|
6. |
Tan C, Qin G, Wang QQ, et al. Clinicopathologic and endoscopic features of sessile serrated lesions and conventional adenomas: a large inpatient population-based study in China. Front Oncol, 2024, 14: 1337035. doi: 10.3389/fonc.2024.1337035.
|
7. |
Wang Z, Chang Y, Sun H, et al. Advances in molecular mechanisms of inflammatory bowel disease-associated colorectal cancer (Review). Oncol Lett, 2024, 27(6): 257. doi: 10.3892/ol.2024.14390.
|
8. |
Ionescu VA, Gheorghe G, Bacalbasa N, et al. Colorectal cancer: from risk factors to oncogenesis. Medicina (Kaunas), 2023, 59(9): 1646. doi: 10.3390/medicina59091646.
|
9. |
Aceto GM, Catalano T, Curia MC. Molecular aspects of colorectal adenomas: The interplay among microenvironment, oxidative stress, and predisposition. Biomed Res Int, 2020, 2020: 1726309. doi: 10.1155/2020/1726309.
|
10. |
Hoang KD, Chen JH, Huang TW, et al. Oral aspirin for preventing colorectal adenoma recurrence: A systematic review and network meta-analysis of randomized controlled trials. PLoS One, 2024, 19(3): e0279784. doi: 10.1371/journal.pone.0279784.
|
11. |
Tsumuraya H, Okayama H, Katagata M, et al. TGFβ-responsive stromal activation occurs early in serrated colorectal carcinogenesis. Int J Mol Sci, 2024, 25(9): 4626. doi: 10.3390/ijms25094626.
|
12. |
Matas J, Kohrn B, Fredrickson J, et al. Colorectal cancer is associated with the presence of cancer driver mutations in normal colon. Cancer Res, 2022, 82(8): 1492-1502.
|
13. |
Smit WL, Spaan CN, Johannes de Boer R, et al. Driver mutations of the adenoma-carcinoma sequence govern the intestinal epithelial global translational capacity. Proc Natl Acad Sci U S A, 2020, 117(41): 25560-25570.
|
14. |
Liebl MC, Hofmann TG. The role of p53 signaling in colorectal cancer. Cancers (Basel), 2021, 13(9): 2125. doi: 10.3390/cancers13092125.
|
15. |
Tariq K, Ghias K. Colorectal cancer carcinogenesis: a review of mechanisms. Cancer Biol Med, 2016, 13(1): 120-135.
|
16. |
Abolghasemi Fard A, Mahmoodzadeh A. Unraveling the progression of colon cancer pathogenesis through epigenetic alterations and genetic pathways. Cureus, 2024, 16(5): e59503. doi: 10.7759/cureus.59503.
|
17. |
Kim J, Lee HK. Potential role of the gut microbiome in colorectal cancer progression. Front Immunol, 2022, 12: 807648. doi: 10.3389/fimmu.2021.807648.
|
18. |
Zhang Z, Bahaji Azami NL, Liu N, et al. Research progress of intestinal microecology in the pathogenesis of colorectal adenoma and carcinogenesis. Technol Cancer Res Treat, 2023, 22: 15330338221135938. doi: 10.1177/15330338221135938.
|
19. |
Boulangé CL, Neves AL, Chilloux J, et al. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med, 2016, 8(1): 42. doi: 10.1186/s13073-016-0303-2.
|
20. |
Goedert JJ, Gong Y, Hua X, et al. Fecal microbiota characteristics of patients with colorectal adenoma detected by screening: A population-based study. EBioMedicine, 2015, 2(6): 597-603.
|
21. |
Li Y, Li Q, Yuan R, et al. Bifidobacterium breve-derived indole-3-lactic acid ameliorates colitis-associated tumorigenesis by directing the differentiation of immature colonic macrophages. Theranostics, 2024, 14(7): 2719-2735.
|
22. |
Kc D, Sumner R, Lippmann S. Gut microbiota and health. Postgrad Med, 2020, 132(3): 274. doi: 10.1080/00325481.2019.1662711.
|
23. |
Cheng E, Um CY, Prizment AE, et al. Evolutionary-concordance lifestyle and diet and mediterranean diet pattern scores and risk of incident colorectal cancer in Iowa women. Cancer Epidemiol Biomarkers Prev, 2018, 27(10): 1195-1202.
|
24. |
Fu T, Huan T, Rahman G, et al. Paired microbiome and metabolome analyses associate bile acid changes with colorectal cancer progression. Cell Rep, 2023, 42(8): 112997. doi: 10.1016/j.celrep.2023.112997.
|
25. |
Yang Y, Weng W, Peng J, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating Toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of microRNA-21. Gastroenterology, 2017, 152(4): 851-866.
|
26. |
Taniyama D, Taniyama K, Kuraoka K, et al. CD204-positive tumor-associated macrophages relate to malignant transformation of colorectal adenoma. Anticancer Res, 2019, 39(6): 2767-2775.
|
27. |
Broadfield LA, Pane AA, Talebi A, et al. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev Cell, 2021, 56(10): 1363-1393.
|
28. |
Tian Y, Wang K, Li J, et al. The association between serum lipids and colorectal neoplasm: a systemic review and meta-analysis. Public Health Nutr, 2015, 18(18): 3355-3370.
|
29. |
Xiong J, Wu Y, Chen D, et al. MAFLD with central obesity is associated with increased risk of colorectal adenoma and high-risk adenoma. BMC Gastroenterol, 2024, 24(1): 138. doi: 10.1186/s12876-024-03220-z.
|
30. |
Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord, 2019, 20(4): 461-472.
|
31. |
Sun Y, Zhang X, Hang D, et al. Integrative plasma and fecal metabolomics identify functional metabolites in adenoma-colorectal cancer progression and as early diagnostic biomarkers. Cancer cell, 2024, 42(8): 1386-1400.
|
32. |
He X, Lan H, Jin K, et al. Cholesterol in colorectal cancer: an essential but tumorigenic precursor? Front Oncol, 2023, 13: 1276654. doi: 10.3389/fonc.2023.1276654.
|
33. |
Wu Y, Pu X, Wang X, et al. Reprogramming of lipid metabolism in the tumor microenvironment: a strategy for tumor immunotherapy. Lipids Health Dis, 2024, 23(1): 35. doi: 10.1186/s12944-024-02024-0.
|
34. |
Zhou H, Urso CJ, Jadeja V. Saturated fatty acids in obesity-associated inflammation. J Inflamm Res, 2020, 13: 1-14.
|
35. |
Ahmed Nor EM, Saied EM, Mina SN, et al. Clinicopathological value of epidermal growth factor receptor (EGFR) and Ki-67 expression in colorectal adenoma and adenocarcinoma. J Pak Med Assoc. 2023, 73(Suppl 4)(4): S124-S130. doi: 10.47391/JPMA.EGY-S4-26.
|
36. |
Wang B, Zhang J, Wang X, et al. Identification and clinical validation of key genes as the potential biomarkers in colorectal adenoma. BMC Cancer, 2023, 23(1): 39. doi: 10.1186/s12885-022-10422-9.
|
37. |
肖博, 熊光冰, 肖体先, 等. 儿茶酚胺氧位甲基转移酶在结直肠腺瘤和结直肠癌组织中的表达. 中国普外基础与临床杂志, 2015, 22(6): 705-709.
|
38. |
Lu D, Wang M, Ke X, et al. Association between H. pylori infection and colorectal polyps: A meta-analysis of observational studies. Front Med (Lausanne), 2022, 8: 706036. doi: 10.3389/fmed.2021.706036.
|
39. |
Fujimori S. Progress in elucidating the relationship between Helicobacter pylori infection and intestinal diseases. World J Gastroenterol, 2021, 27(47): 8040-8046.
|
40. |
庄肇朦, 余炳取, 谢敏, 等. 结直肠腺瘤组织幽门螺杆菌富集与腺瘤临床及病理特征的相关性. 中华医学杂志, 2022, 102(44): 3543-3548.
|