1. |
Norton R, Kobusingye O. Injuries. N Engl J Med, 2013, 368(18): 1723-1730.
|
2. |
Davenport RA, Brohi K. Cause of trauma-induced coagulopathy. Curr Opin Anaesthesiol, 2016, 29(2): 212-219.
|
3. |
Hess JR, Brohi K, Dutton RP, et al. The coagulopathy of trauma: a review of mechanisms. J Trauma, 2008, 65(4): 748-754.
|
4. |
Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost, 2005, 3(8): 1894-904.
|
5. |
Lowe GD, Rumley A, Mackie IJ. Plasma fibrinogen. Ann Clin Biochem, 2004, 41(Pt 6): 430-440.
|
6. |
Weisel JW, Nagaswami C, Vilaire G, et al. Examination of the platelet membrane glycoprotein IIb-IIIa complex and its interaction with fibrinogen and other ligands by electron microscopy. J Biol Chem, 1992, 267(23): 16637-16643.
|
7. |
Kremers RM, Wagenvoord RJ, Hemker HC. The effect of fibrin(ogen) on thrombin generation and decay. Thromb Haemost, 2014, 112(3): 486-494.
|
8. |
Rourke C, Curry N, Khan S, et al. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost, 2012, 10(7): 1342-1351.
|
9. |
Hagemo JS, Stanworth S, Juffermans NP, et al. Prevalence, predictors and outcome of hypofibrinogenaemia in trauma: a multicentre observational study. Crit Care, 2014, 18(2): R52.
|
10. |
Deras P, Villiet M, Manzanera J, et al. Early coagulopathy at hospital admission predicts initial or delayed fibrinogen deficit in severe trauma patients. J Trauma Acute Care Surg, 2014, 77(3): 433-440.
|
11. |
Hayakawa M, Gando S, Ono Y, et al. Fibrinogen level deteriorates before other routine coagulation parameters and massive transfusion in the early phase of severe trauma: a retrospective observational study. Semin Thromb Hemost, 2015, 41(1): 35-42.
|
12. |
Inaba K, Karamanos E, Lustenberger T, et al. Impact of fibrinogen levels on outcomes after acute injury in patients requiring a massive transfusion. J Am Coll Surg, 2013, 216(2): 290-297.
|
13. |
Kimura Y, Kimura S, Sumita S, et al. Predictors of hypofibrinogenemia in blunt trauma patients on admission. J Anesth, 2015, 29(2): 242-248.
|
14. |
Schlimp CJ, Voelckel W, Inaba K, et al. Estimation of plasma fibrinogen levels based on hemoglobin, base excess and Injury Severity Score upon emergency room admission. Crit Care, 2013, 17(4): R137.
|
15. |
Schlimp CJ, Cadamuro J, Solomon C, et al. The effect of fibrinogen concentrate and factor XIII on thromboelastometry in 33% diluted blood with albumin, gelatine, hydroxyethyl starch or saline in vitro. Blood Transfus, 2013, 11(4): 510-517.
|
16. |
Martini J, Maisch S, Pilshofer L, et al. Fibrinogen concentrate in dilutional coagulopathy: a dose study in pigs. Transfusion, 2014, 54(1): 149-157.
|
17. |
Fenger-Eriksen C, Anker-Møller E, Heslop J, et al. Thrombelastographic whole blood clot formation after ex vivo addition of plasma substitutes: improvements of the induced coagulopathy with fibrinogen concentrate. Br J Anaesth, 2005, 94(3): 324-329.
|
18. |
Davenport R, Manson J, De’Ath H, et al. Functional definition and characterization of acute traumatic coagulopathy. Crit Care Med, 2011, 39(12): 2652-2658.
|
19. |
Martini WZ. Coagulopathy by hypothermia and acidosis: mechanisms of thrombin generation and fibrinogen availability. J Trauma, 2009, 67(1): 202-209.
|
20. |
Martini WZ, Holcomb JB. Acidosis and coagulopathy: the differential effects on fibrinogen synthesis and breakdown in pigs. Ann Surg, 2007, 246(5): 831-835.
|
21. |
Martini WZ. The effects of hypothermia on fibrinogen metabolism and coagulation function in swine. Metabolism, 2007, 56(2): 214-221.
|
22. |
Darlington DN, Kheirabadi BS, Delgado AV, et al. Coagulation changes to systemic acidosis and bicarbonate correction in swine. J Trauma, 2011, 71(5): 1271-1277.
|
23. |
Wolberg AS, Meng ZH, Monroe DM III, et al. A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function. J Trauma, 2004, 56(6): 1221-1228.
|
24. |
Cotton BA, Harvin JA, Kostousouv V, et al. Hyperfibrinolysis at admission is an uncommon but highly lethal event associated with shock and prehospital fluid administration. J Trauma Acute Care Surg, 2012, 73(2): 365-370.
|
25. |
Kashuk JL, Moore EE, Sawyer M, et al. Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of trauma. Ann Surg, 2010, 252(3): 434-444.
|
26. |
Brohi K, Cohen MJ, Ganter MT et al. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway?. Ann Surg, 2007, 245(5): 812-818.
|
27. |
Brohi K, Cohen MJ, Ganter MT, et al. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma, 2008, 64(5): 1211-1217.
|
28. |
Levy JH, Welsby I, Goodnough LT. Fibrinogen as a therapeutic target for bleeding: a review of critical levels and replacement therapy. Transfusion, 2014, 54(5): 1389-1405.
|
29. |
Hunt BJ, Allard S, Keeling D, et al. A practical guideline for the haematological management of major haemorrhage. Br J Haematol, 2015, 170(6): 788-803.
|
30. |
Rossaint R, Bouillon B, Cerny V, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care, 2016, 20: 100.
|
31. |
Fenger-Eriksen C, Moore GW, Rangarajan S, et al. Fibrinogen estimates are influenced by methods of measurement and hemodilution with colloid plasma expanders. Transfusion, 2010, 50(12): 2571-2576.
|
32. |
Park MS, Martini WZ, Dubick MA, et al. Thromboelastography as a better indicator of hypercoagulable state after injury than prothrombin time or activated partial thromboplastin time. J Trauma, 2009, 67(2): 266-275.
|
33. |
Rugeri L, Levrat A, David JS, et al. Diagnosis of early coagulation abnormalities in trauma patients by rotation thrombelastography. J Thromb Haemost, 2007, 5(2): 289-295.
|
34. |
Inaba K, Rizoli S, Veigas PV, et al. 2014 Consensus conference on viscoelastic test-based transfusion guidelines for early trauma resuscitation: report of the panel. J Trauma Acute Care Surg, 2015, 78(6): 1220-1229.
|
35. |
Davenport R, Curry N, Manson J, et al. Hemostatic effects of fresh frozen plasma may be maximal at red cell ratios of 1:2. J Trauma, 2011, 70(1): 90-95.
|
36. |
Nascimento B, Callum J, Rubenfeld G, et al. Clinical review: fresh frozen plasma in massive bleedings - more questions than answers. Crit Care, 2010, 14(1): 202.
|
37. |
Rock G. A comparison of methods of pathogen inactivation of FFP. Vox Sang, 2011, 100(2): 169-178.
|
38. |
Li G, Rachmale S, Kojicic M, et al. Incidence and transfusion risk factors for transfusion-associated circulatory overload among medical intensive care unit patients. Transfusion, 2011, 51(2): 338-343.
|
39. |
Eder AF, Herron R, Strupp A, et al. Transfusion-related acute lung injury surveillance (2003-2005) and the potential impact of the selective use of plasma from male donors in the American Red Cross. Transfusion, 2007, 47(4): 599-607.
|
40. |
Morrison JJ, Ross JD, Dubose JJ et al. Association of cryoprecipitate and tranexamic acid with improved survival following wartime injury. JAMA Surg, 2013, 148(3): 218-225.
|
41. |
Curry N, Rourke C, Davenport R, et al. Early cryoprecipitate for major haemorrhage in trauma: a randomised controlled feasibility trial. Br J Anaesth, 2015, 115(1): 76-83.
|
42. |
Sorensen B, Bevan D. A critical evaluation of cryoprecipitate for replacement of fibrinogen. Br J Haematol, 2010, 149(6): 834-843.
|
43. |
Winearls J, Wullschleger M, Wake E, et al. Fibrinogen Early In Severe Trauma studY (FEISTY): study protocol for a randomised controlled trial. Trials, 2017, 26, 18(1): 241.
|
44. |
Fries D, Haas T, Klingler A, et al. Efficacy of fibrinogen and prothrombin complex concentrate used to reverse dilutional coagulopathy--a porcine model. Br J Anaesth, 2006, 97(4): 460-467.
|
45. |
Schäfer N, Driessen A, Bauerfeind U, et al. In vitro effects of different sources of fibrinogen supplementation on clot initiation and stability in a model of dilutional coagulopathy. Transfus Med, 2016, 26(5): 373-380.
|
46. |
Solomon C, Pichlmaier U, Schoechl H, et al. Recovery of fibrinogen after administration of fibrinogen concentrate to patients with severe bleeding after cardiopulmonary bypass surgery. Br J Anaesth, 2010, 104(5): 555-562.
|
47. |
Schöchl H, Nienaber U, Hofer G, et al. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM®)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care, 2010, 14(2): R55.
|
48. |
Warmuth M, Mad P, Wild C. Systematic review of the efficacy and safety of fibrinogen concentrate substitution in adults. Acta Anaesthesiol Scand, 2012, 56(5): 539-548.
|
49. |
Innerhofer P, Fries D, Mittermayr M, et al. Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): a single-centre, parallel-group, open-label, randomised trial. Lancet Haematol, 2017, 4(6): e258-e271.
|
50. |
Fominskiy E, Nepomniashchikh VA, Lomivorotov VV, et al. Efficacy and safety of fibrinogen concentrate in surgical patients: a meta-analysis of randomized controlled trials. J Cardiothorac Vasc Anesth, 2016, 30(5): 1196-1204.
|
51. |
Mengoli C, Franchini M, Marano G, et al. The use of fibrinogen concentrate for the management of trauma-related bleeding: a systematic review and meta-analysis. Blood Transfus, 2017, 15(4): 318-324.
|
52. |
Ker K, Roberts I, Shakur H, et al. Antifibrinolytic drugs for acute traumatic injury. Cochrane Database Syst Rev, 2015, (5): CD004896.
|
53. |
CRASH-2 collaborators, Roberts I, Shakur H, et al. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet, 2011, 377(9771): 1096-1101.
|