Citation: 王志超, 冯凡超, 顾诚, 彭文潘, 徐泳, 韩迪, 周贤梅. 内质网应激:特发性肺纤维化的潜在治疗方向. Chinese Journal of Respiratory and Critical Care Medicine, 2020, 19(5): 520-527. doi: 10.7507/1671-6205.201905018 Copy
1. | Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet, 2017, 389(10082): 1941-1952. |
2. | Lederer DJ, Martinez FJ. Idiopathic Pulmonary Fibrosis. N Engl J Med, 2018, 378(19): 1811-1823. |
3. | Wolters PJ, Collard HR, Jones KD. Pathogenesis of idiopathic pulmonary fibrosis. Annu Rev Pathol, 2014, 9: 157-179. |
4. | Kotton DN, Morrisey EE. Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat Med, 2014, 20(8): 822-832. |
5. | Barkauskas CE, Cronce MJ, Rackley CR, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest, 2013, 123(7): 3025-3036. |
6. | Tanjore H, Blackwell TS, Lawson WE. Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol, 2012, 302(8): L721-L729. |
7. | Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol, 2015, 10: 173-194. |
8. | Tanjore H, Lawson WE, Blackwell TS. Endoplasmic reticulum stress as a pro-fibrotic stimulus. Biochim Biophys Acta, 2013, 1832(7): 940-947. |
9. | Kabore AF, Wang WJ, Russo SJ, et al. Biosynthesis of surfactant protein C: characterization of aggresome formation by EGFP chimeras containing propeptide mutants lacking conserved cysteine residues. J Cell Sci, 2001, 114: 293-302. |
10. | Maguire JA, Mulugeta S, Beers MF. Endoplasmic reticulum stress induced by surfactant protein C BRICHOS mutants promotes proinflammatory signaling by epithelial cells. Am J Respir Cell Mol Biol, 2011, 44(3): 404-414. |
11. | Zhong Q, Zhou B, Ann DK, et al. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein. Am J Respir Cell Mol Biol, 2011, 45(3): 498-509. |
12. | Lawson WE, Crossno PF, Polosukhin VV, et al. Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection. Am J Physiol Lung Cell Mol Physiol, 2008, 294(6): L1119-L1126. |
13. | Mulugeta S, Maguire JA, Newitt JL, et al. Misfolded BRICHOS SP-C mutant proteins induce apoptosis via caspase-4- and cytochrome c-related mechanisms. Am J Physiol Lung Cell Mol Physiol, 2007, 293(3): L720-L729. |
14. | Tanjore H, Cheng DS, Degryse AL, et al. Alveolar epithelial cells undergo epithelial-to-mesenchymal transition in response to endoplasmic reticulum stress. J Biol Chem, 2011, 286(35): 30972-30980. |
15. | Korfei M, Ruppert C, Mahavadi P, et al. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2008, 178(8): 838-846. |
16. | Guerriero CJ, Brodsky JL. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol Rev, 2012, 92(2): 537-576. |
17. | Princiotta MF, Finzi D, Qian SB, et al. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity, 2003, 18(3): 343-354. |
18. | Frakes AE, Dillin A. The UPR(ER): Sensor and Coordinator of Organismal Homeostasis. Mol Cell, 2017, 66(6): 761-771. |
19. | Hetz C, Saxena S. ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol, 2017, 13(8): 477-491. |
20. | Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer, 2008, 8(11): 851-864. |
21. | Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ, 2004, 11(4): 381-389. |
22. | Xu C, Ng DT. Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol, 2015, 16(12): 742-752. |
23. | Ron D, Harding HP. Protein-folding homeostasis in the endoplasmic reticulum and nutritional regulation. Cold Spring Harb Perspect Biol, 2012, 4(12): pii: a013177. |
24. | Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science, 2011, 334(6059): 1081-1086. |
25. | Fink AL. Chaperone-mediated protein folding. Physiol Rev, 1999, 79(2): 425-449. |
26. | Bulleid NJ. Protein disulfide-isomerase: role in biosynthesis of secretory proteins. Adv Protein Chem, 1993, 44: 125-150. |
27. | Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem, 2005, 74: 739-789. |
28. | Bertolotti A, Zhang Y, Hendershot L M, et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol, 2000, 2(6): 326-332. |
29. | Moore BB, Moore TA. Viruses in idiopathic pulmonary fibrosis. Etiology and exacerbation. Ann Am Thorac Soc, 2015, 12 Suppl 2: S186-S192. |
30. | Kropski JA, Pritchett JM, Zoz DF, et al. Extensive phenotyping of individuals at risk for familial interstitial pneumonia reveals clues to the pathogenesis of interstitial lung disease. Am J Respir Crit Care Med, 2015, 191(4): 417-426. |
31. | Kusko RL, Brothers JF 2nd, Tedrow J, et al. Integrated genomics reveals convergent transcriptomic networks underlying chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2016, 194(8): 948-960. |
32. | Xi Y, Kim T, Brumwell AN, et al. Local lung hypoxia determines epithelial fate decisions during alveolar regeneration. Nat Cell Biol, 2017, 19(8): 904-914. |
33. | Martinez G, Duran-Aniotz C, Cabral-Miranda F, et al. Endoplasmic reticulum proteostasis impairment in aging. Aging Cell, 2017, 16(4): 615-623. |
34. | Bueno M, Lai YC, Romero Y, et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest, 2015, 125(2): 521-538. |
35. | Saez I, Vilchez D. The mechanistic links between proteasome activity, aging and age-related diseases. Curr Genomics, 2014, 15(1): 38-51. |
36. | Bratic A, Larsson N G. The role of mitochondria in aging. J Clin Invest, 2013, 123(3): 951-957. |
37. | Torres-Gonzalez E, Bueno M, Tanaka A, et al. Role of endoplasmic reticulum stress in age-related susceptibility to lung fibrosis. Am J Respir Cell Mol Biol, 2012, 46(6): 748-756. |
38. | Ruggiano A, Foresti O, Carvalho P. Quality control: ER-associated degradation: protein quality control and beyond. J Cell Biol, 2014, 204(6): 869-879. |
39. | Araya J, Kojima J, Takasaka N, et al. Insufficient autophagy in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol, 2013, 304(1): L56-L69. |
40. | Zhang L, Wang Y, Pandupuspitasari NS, et al. Endoplasmic reticulum stress, a new wrestler, in the pathogenesis of idiopathic pulmonary fibrosis. Am J Transl Res, 2017, 9(2): 722-735. |
41. | Cassel TN, Nord M. C/EBP transcription factors in the lung epithelium. Am J Physiol Lung Cell Mol Physiol, 2003, 285(4): L773-L781. |
42. | Mccullough KD, Martindale JL, Klotz LO, et al. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol, 2001, 21(4): 1249-1259. |
43. | Ma Y, Brewer JW, Diehl JA, et al. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol, 2002, 318(5): 1351-1365. |
44. | Scorrano L, Oakes SA, Opferman JT, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science, 2003, 300(5616): 135-139. |
45. | Reimold AM, Iwakoshi NN, Manis J, et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature, 2001, 412(6844): 300-307. |
46. | Ghavami S, Yeganeh B, Zeki AA, et al. Autophagy and the unfolded protein response promote profibrotic effects of TGF-β1 in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol, 2018, 314(3): L493-L504. |
47. | Mcmorrow T, Gaffney MM, Slattery C, et al. Cyclosporine A induced epithelial-mesenchymal transition in human renal proximal tubular epithelial cells. Nephrol Dial Transplant, 2005, 20(10): 2215-2225. |
48. | Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell, 2010, 140(6): 900-917. |
49. | Kaser A, Lee AH, Franke A, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell, 2008, 134(5): 743-756. |
50. | Shenderov K, Riteau N, Yip R, et al. Cutting edge: Endoplasmic reticulum stress licenses macrophages to produce mature IL-1beta in response to TLR4 stimulation through a caspase-8- and TRIF-dependent pathway. J Immunol, 2014, 192(5): 2029-2033. |
51. | Braga TT, Agudelo JS, Camara NO. Macrophages during the fibrotic process: M2 as friend and foe. Front Immunol, 2015, 6: 602. |
52. | Yao Y, Wang Y, Zhang Z, et al. Chop deficiency protects mice against bleomycin-induced pulmonary fibrosis by attenuating M2 macrophage production. Mol Ther, 2016, 24(5): 915-925. |
53. | Oh J, Riek AE, Weng S, et al. Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. J Biol Chem, 2012, 287(15): 11629-11641. |
54. | Wang Y, Zhu J, Zhang L, et al. Role of C/EBP homologous protein and endoplasmic reticulum stress in asthma exacerbation by regulating the IL-4/signal transducer and activator of transcription 6/transcription factor EC/IL-4 receptor alpha positive feedback loop in M2 macrophages. J Allergy Clin Immunol, 2017, 140(6): 1550-1561, e8. |
55. | Lawson WE, Cheng DS, Degryse AL, et al. Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs. Proc Natl Acad Sci U S A, 2011, 108(26): 10562-10567. |
56. | Bridges JP, Wert SE, Nogee LM, et al. Expression of a human surfactant protein C mutation associated with interstitial lung disease disrupts lung development in transgenic mice. J Biol Chem, 2003, 278(52): 52739-52746. |
57. | Tanaka Y, Ishitsuka Y, Hayasaka M, et al. The exacerbating roles of CCAAT/enhancer-binding protein homologous protein (CHOP) in the development of bleomycin-induced pulmonary fibrosis and the preventive effects of tauroursodeoxycholic acid (TUDCA) against pulmonary fibrosis in mice. Pharmacol Res, 2015, 99: 52-62. |
58. | Ayaub EA, Kolb PS, Mohammed-Ali Z, et al. GRP78 and CHOP modulate macrophage apoptosis and the development of bleomycin-induced pulmonary fibrosis. J Pathol, 2016, 239(4): 411-425. |
59. | Winters CJ, Koval O, Murthy S, et al. CaMKII inhibition in type II pneumocytes protects from bleomycin-induced pulmonary fibrosis by preventing Ca2+-dependent apoptosis. Am J Physiol Lung Cell Mol Physiol, 2016, 310(1): L86-L94. |
60. | Nakajima F, Aratani S, Fujita H, et al. Synoviolin inhibitor LS-102 reduces endoplasmic reticulum stress-induced collagen secretion in an in vitro model of stress-related interstitial pneumonia. Int J Mol Med, 2015, 35(1): 110-116. |
61. | Baek HA, Kim DS, Park HS, et al. Involvement of endoplasmic reticulum stress in myofibroblastic differentiation of lung fibroblasts. Am J Respir Cell Mol Biol, 2012, 46(6): 731-739. |
62. | Zimmerman KA, Graham LV, Pallero MA, et al. Calreticulin regulates transforming growth factor-beta-stimulated extracellular matrix production. J Biol Chem, 2013, 288(20): 14584-14598. |
63. | Hsu HS, Liu CC, Lin JH, et al. Involvement of ER stress, PI3K/AKT activation, and lung fibroblast proliferation in bleomycin-induced pulmonary fibrosis. Sci Rep, 2017, 7(1): 14272. |
64. | Byrne AJ, Maher TM, Lloyd CM. Pulmonary macrophages: a new therapeutic pathway in fibrosing lung disease?. Trends Mol Med, 2016, 22(4): 303-316. |
65. | Ghosh R, Wang L, Wang ES, et al. Allosteric inhibition of the IRE1alpha RNase preserves cell viability and function during endoplasmic reticulum stress. Cell, 2014, 158(3): 534-548. |
66. | Zinszner H, Kuroda M, Wang X, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev, 1998, 12(7): 982-995. |
67. | Liu SH, Yang CC, Chan DC, et al. Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro. Oncotarget, 2016, 7(16): 22116-22127. |
68. | Schafer MJ, White TA, Iijima K, et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun, 2017, 8: 14532. |
69. | Tian Y, Li H, Qiu T, et al. Loss of PTEN induces lung fibrosis via alveolar epithelial cell senescence depending on NF-kappaB activation. Aging Cell, 2019, 18(1): e12858. |
70. | Wiley CD, Velarde MC, Lecot P, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab, 2016, 23(2): 303-314. |
71. | Williams KW, Liu T, Kong X, et al. Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis. Cell Metab, 2014, 20(3): 471-482. |
72. | Zhang H, Yue Y, Sun T, et al. Transmissible endoplasmic reticulum stress from myocardiocytes to macrophages is pivotal for the pathogenesis of CVB3-induced viral myocarditis. Sci Rep, 2017, 7: 42162. |
- 1. Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet, 2017, 389(10082): 1941-1952.
- 2. Lederer DJ, Martinez FJ. Idiopathic Pulmonary Fibrosis. N Engl J Med, 2018, 378(19): 1811-1823.
- 3. Wolters PJ, Collard HR, Jones KD. Pathogenesis of idiopathic pulmonary fibrosis. Annu Rev Pathol, 2014, 9: 157-179.
- 4. Kotton DN, Morrisey EE. Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat Med, 2014, 20(8): 822-832.
- 5. Barkauskas CE, Cronce MJ, Rackley CR, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest, 2013, 123(7): 3025-3036.
- 6. Tanjore H, Blackwell TS, Lawson WE. Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol, 2012, 302(8): L721-L729.
- 7. Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol, 2015, 10: 173-194.
- 8. Tanjore H, Lawson WE, Blackwell TS. Endoplasmic reticulum stress as a pro-fibrotic stimulus. Biochim Biophys Acta, 2013, 1832(7): 940-947.
- 9. Kabore AF, Wang WJ, Russo SJ, et al. Biosynthesis of surfactant protein C: characterization of aggresome formation by EGFP chimeras containing propeptide mutants lacking conserved cysteine residues. J Cell Sci, 2001, 114: 293-302.
- 10. Maguire JA, Mulugeta S, Beers MF. Endoplasmic reticulum stress induced by surfactant protein C BRICHOS mutants promotes proinflammatory signaling by epithelial cells. Am J Respir Cell Mol Biol, 2011, 44(3): 404-414.
- 11. Zhong Q, Zhou B, Ann DK, et al. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein. Am J Respir Cell Mol Biol, 2011, 45(3): 498-509.
- 12. Lawson WE, Crossno PF, Polosukhin VV, et al. Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection. Am J Physiol Lung Cell Mol Physiol, 2008, 294(6): L1119-L1126.
- 13. Mulugeta S, Maguire JA, Newitt JL, et al. Misfolded BRICHOS SP-C mutant proteins induce apoptosis via caspase-4- and cytochrome c-related mechanisms. Am J Physiol Lung Cell Mol Physiol, 2007, 293(3): L720-L729.
- 14. Tanjore H, Cheng DS, Degryse AL, et al. Alveolar epithelial cells undergo epithelial-to-mesenchymal transition in response to endoplasmic reticulum stress. J Biol Chem, 2011, 286(35): 30972-30980.
- 15. Korfei M, Ruppert C, Mahavadi P, et al. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2008, 178(8): 838-846.
- 16. Guerriero CJ, Brodsky JL. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol Rev, 2012, 92(2): 537-576.
- 17. Princiotta MF, Finzi D, Qian SB, et al. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity, 2003, 18(3): 343-354.
- 18. Frakes AE, Dillin A. The UPR(ER): Sensor and Coordinator of Organismal Homeostasis. Mol Cell, 2017, 66(6): 761-771.
- 19. Hetz C, Saxena S. ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol, 2017, 13(8): 477-491.
- 20. Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer, 2008, 8(11): 851-864.
- 21. Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ, 2004, 11(4): 381-389.
- 22. Xu C, Ng DT. Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol, 2015, 16(12): 742-752.
- 23. Ron D, Harding HP. Protein-folding homeostasis in the endoplasmic reticulum and nutritional regulation. Cold Spring Harb Perspect Biol, 2012, 4(12): pii: a013177.
- 24. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science, 2011, 334(6059): 1081-1086.
- 25. Fink AL. Chaperone-mediated protein folding. Physiol Rev, 1999, 79(2): 425-449.
- 26. Bulleid NJ. Protein disulfide-isomerase: role in biosynthesis of secretory proteins. Adv Protein Chem, 1993, 44: 125-150.
- 27. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem, 2005, 74: 739-789.
- 28. Bertolotti A, Zhang Y, Hendershot L M, et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol, 2000, 2(6): 326-332.
- 29. Moore BB, Moore TA. Viruses in idiopathic pulmonary fibrosis. Etiology and exacerbation. Ann Am Thorac Soc, 2015, 12 Suppl 2: S186-S192.
- 30. Kropski JA, Pritchett JM, Zoz DF, et al. Extensive phenotyping of individuals at risk for familial interstitial pneumonia reveals clues to the pathogenesis of interstitial lung disease. Am J Respir Crit Care Med, 2015, 191(4): 417-426.
- 31. Kusko RL, Brothers JF 2nd, Tedrow J, et al. Integrated genomics reveals convergent transcriptomic networks underlying chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2016, 194(8): 948-960.
- 32. Xi Y, Kim T, Brumwell AN, et al. Local lung hypoxia determines epithelial fate decisions during alveolar regeneration. Nat Cell Biol, 2017, 19(8): 904-914.
- 33. Martinez G, Duran-Aniotz C, Cabral-Miranda F, et al. Endoplasmic reticulum proteostasis impairment in aging. Aging Cell, 2017, 16(4): 615-623.
- 34. Bueno M, Lai YC, Romero Y, et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest, 2015, 125(2): 521-538.
- 35. Saez I, Vilchez D. The mechanistic links between proteasome activity, aging and age-related diseases. Curr Genomics, 2014, 15(1): 38-51.
- 36. Bratic A, Larsson N G. The role of mitochondria in aging. J Clin Invest, 2013, 123(3): 951-957.
- 37. Torres-Gonzalez E, Bueno M, Tanaka A, et al. Role of endoplasmic reticulum stress in age-related susceptibility to lung fibrosis. Am J Respir Cell Mol Biol, 2012, 46(6): 748-756.
- 38. Ruggiano A, Foresti O, Carvalho P. Quality control: ER-associated degradation: protein quality control and beyond. J Cell Biol, 2014, 204(6): 869-879.
- 39. Araya J, Kojima J, Takasaka N, et al. Insufficient autophagy in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol, 2013, 304(1): L56-L69.
- 40. Zhang L, Wang Y, Pandupuspitasari NS, et al. Endoplasmic reticulum stress, a new wrestler, in the pathogenesis of idiopathic pulmonary fibrosis. Am J Transl Res, 2017, 9(2): 722-735.
- 41. Cassel TN, Nord M. C/EBP transcription factors in the lung epithelium. Am J Physiol Lung Cell Mol Physiol, 2003, 285(4): L773-L781.
- 42. Mccullough KD, Martindale JL, Klotz LO, et al. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol, 2001, 21(4): 1249-1259.
- 43. Ma Y, Brewer JW, Diehl JA, et al. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol, 2002, 318(5): 1351-1365.
- 44. Scorrano L, Oakes SA, Opferman JT, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science, 2003, 300(5616): 135-139.
- 45. Reimold AM, Iwakoshi NN, Manis J, et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature, 2001, 412(6844): 300-307.
- 46. Ghavami S, Yeganeh B, Zeki AA, et al. Autophagy and the unfolded protein response promote profibrotic effects of TGF-β1 in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol, 2018, 314(3): L493-L504.
- 47. Mcmorrow T, Gaffney MM, Slattery C, et al. Cyclosporine A induced epithelial-mesenchymal transition in human renal proximal tubular epithelial cells. Nephrol Dial Transplant, 2005, 20(10): 2215-2225.
- 48. Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell, 2010, 140(6): 900-917.
- 49. Kaser A, Lee AH, Franke A, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell, 2008, 134(5): 743-756.
- 50. Shenderov K, Riteau N, Yip R, et al. Cutting edge: Endoplasmic reticulum stress licenses macrophages to produce mature IL-1beta in response to TLR4 stimulation through a caspase-8- and TRIF-dependent pathway. J Immunol, 2014, 192(5): 2029-2033.
- 51. Braga TT, Agudelo JS, Camara NO. Macrophages during the fibrotic process: M2 as friend and foe. Front Immunol, 2015, 6: 602.
- 52. Yao Y, Wang Y, Zhang Z, et al. Chop deficiency protects mice against bleomycin-induced pulmonary fibrosis by attenuating M2 macrophage production. Mol Ther, 2016, 24(5): 915-925.
- 53. Oh J, Riek AE, Weng S, et al. Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. J Biol Chem, 2012, 287(15): 11629-11641.
- 54. Wang Y, Zhu J, Zhang L, et al. Role of C/EBP homologous protein and endoplasmic reticulum stress in asthma exacerbation by regulating the IL-4/signal transducer and activator of transcription 6/transcription factor EC/IL-4 receptor alpha positive feedback loop in M2 macrophages. J Allergy Clin Immunol, 2017, 140(6): 1550-1561, e8.
- 55. Lawson WE, Cheng DS, Degryse AL, et al. Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs. Proc Natl Acad Sci U S A, 2011, 108(26): 10562-10567.
- 56. Bridges JP, Wert SE, Nogee LM, et al. Expression of a human surfactant protein C mutation associated with interstitial lung disease disrupts lung development in transgenic mice. J Biol Chem, 2003, 278(52): 52739-52746.
- 57. Tanaka Y, Ishitsuka Y, Hayasaka M, et al. The exacerbating roles of CCAAT/enhancer-binding protein homologous protein (CHOP) in the development of bleomycin-induced pulmonary fibrosis and the preventive effects of tauroursodeoxycholic acid (TUDCA) against pulmonary fibrosis in mice. Pharmacol Res, 2015, 99: 52-62.
- 58. Ayaub EA, Kolb PS, Mohammed-Ali Z, et al. GRP78 and CHOP modulate macrophage apoptosis and the development of bleomycin-induced pulmonary fibrosis. J Pathol, 2016, 239(4): 411-425.
- 59. Winters CJ, Koval O, Murthy S, et al. CaMKII inhibition in type II pneumocytes protects from bleomycin-induced pulmonary fibrosis by preventing Ca2+-dependent apoptosis. Am J Physiol Lung Cell Mol Physiol, 2016, 310(1): L86-L94.
- 60. Nakajima F, Aratani S, Fujita H, et al. Synoviolin inhibitor LS-102 reduces endoplasmic reticulum stress-induced collagen secretion in an in vitro model of stress-related interstitial pneumonia. Int J Mol Med, 2015, 35(1): 110-116.
- 61. Baek HA, Kim DS, Park HS, et al. Involvement of endoplasmic reticulum stress in myofibroblastic differentiation of lung fibroblasts. Am J Respir Cell Mol Biol, 2012, 46(6): 731-739.
- 62. Zimmerman KA, Graham LV, Pallero MA, et al. Calreticulin regulates transforming growth factor-beta-stimulated extracellular matrix production. J Biol Chem, 2013, 288(20): 14584-14598.
- 63. Hsu HS, Liu CC, Lin JH, et al. Involvement of ER stress, PI3K/AKT activation, and lung fibroblast proliferation in bleomycin-induced pulmonary fibrosis. Sci Rep, 2017, 7(1): 14272.
- 64. Byrne AJ, Maher TM, Lloyd CM. Pulmonary macrophages: a new therapeutic pathway in fibrosing lung disease?. Trends Mol Med, 2016, 22(4): 303-316.
- 65. Ghosh R, Wang L, Wang ES, et al. Allosteric inhibition of the IRE1alpha RNase preserves cell viability and function during endoplasmic reticulum stress. Cell, 2014, 158(3): 534-548.
- 66. Zinszner H, Kuroda M, Wang X, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev, 1998, 12(7): 982-995.
- 67. Liu SH, Yang CC, Chan DC, et al. Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro. Oncotarget, 2016, 7(16): 22116-22127.
- 68. Schafer MJ, White TA, Iijima K, et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun, 2017, 8: 14532.
- 69. Tian Y, Li H, Qiu T, et al. Loss of PTEN induces lung fibrosis via alveolar epithelial cell senescence depending on NF-kappaB activation. Aging Cell, 2019, 18(1): e12858.
- 70. Wiley CD, Velarde MC, Lecot P, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab, 2016, 23(2): 303-314.
- 71. Williams KW, Liu T, Kong X, et al. Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis. Cell Metab, 2014, 20(3): 471-482.
- 72. Zhang H, Yue Y, Sun T, et al. Transmissible endoplasmic reticulum stress from myocardiocytes to macrophages is pivotal for the pathogenesis of CVB3-induced viral myocarditis. Sci Rep, 2017, 7: 42162.
-
Previous Article
中性粒细胞胞外诱捕网与非感染性肺部疾病的研究进展 -
Next Article
干细胞治疗急性呼吸窘迫综合征及提高疗效的相关研究进展