1. |
Manda A, Pruchniak MP, Arazna M, et al. Neutrophil extracellular traps in physiology and pathology. Cent Eur J Immunol, 2014, 39(1): 116-121.
|
2. |
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science, 2004, 303(5663): 1532-1535.
|
3. |
Wiersinga WJ, Leopold SJ, Cranendonk DR, et al. Host innate immune responses to sepsis. Virulence, 2014, 5(1): 36-44.
|
4. |
Hernandez JC, Giraldo DM, Paul S, et al. Involvement of neutrophil hyporesponse and the role of Toll-like receptors in human immunodeficiency virus 1 protection. PLoS One, 2015, 10(3): e0119844.
|
5. |
Porto BN, Stein RT. Neutrophil extracellular traps in pulmonary diseases: too much of a good thing?. Front Immunol, 2016, 7: 311.
|
6. |
Steinberg BE, Grinstein S. Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death. Sci STKE, 2007, 2007(379): pe11.
|
7. |
Kusunoki Y, Nakazawa D, Shida H, et al. Peptidylarginine deiminase inhibitor suppresses neutrophil extracellular trap formation and MPO-ANCA production. Front Immunol, 2016, 7: 227.
|
8. |
Delgado-Rizo V, Martinez-Guzman MA, Iniguez-Gutierrez L, et al. Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol, 2017, 8: 81.
|
9. |
Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med, 2017, 23(3): 279-287.
|
10. |
Tran TM, MacIntyre A, Hawes M, et al. Escaping underground nets: extracellular DNases degrade plant extracellular traps and contribute to virulence of the plant pathogenic bacterium ralstonia solanacearum. PLoS Pathog, 2016, 12(6): e1005686.
|
11. |
苏慧慧, 万春友, 魏蔚. 血清淀粉样蛋白A诱导中性粒细胞胞外诱捕网形成. 天津医药, 2016, 44(2): 146-148.
|
12. |
Luo L, Zhang S, Wang Y, et al. Proinflammatory role of neutrophil extracellular traps in abdominal sepsis. Am J Physiol Lung Cell Mol Physiol, 2014, 307(7): L586-L596.
|
13. |
Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med, 2011, 17(3-4): 293-307.
|
14. |
Saffarzadeh M, Juenemann C, Queisser MA, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One, 2012, 7(2): e32366.
|
15. |
Bless NM, Smith D, Charlton J, et al. Protective effects of an aptamer inhibitor of neutrophil elastase in lung inflammatory injury. Curr Biol, 1997, 7(11): 877-880.
|
16. |
Czaikoski PG, Mota JM, Nascimento DC, et al. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis. PLoS One, 2016, 11(2): e0148142.
|
17. |
Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest, 2012, 122(8): 2731-2740.
|
18. |
Storisteanu DM, Pocock JM, Cowburn AS, et al. Evasion of neutrophil extracellular traps by respiratory pathogens. Am J Respir Cell Mol Biol, 2017, 56(4): 423-431.
|
19. |
Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol, 2018, 18(2): 134-147.
|
20. |
Lefrancais E, Mallavia B, Zhuo H, et al. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight, 2018, 3(3): e98178.
|
21. |
Bagnato G, Harari S. Cellular interactions in the pathogenesis of interstitial lung diseases. Eur Respir Rev, 2015, 24(135): 102-114.
|
22. |
Kolahian S, Fernandez IE, Eickelberg O, et al. Immune mechanisms in pulmonary fibrosis. Am J Respir Cell Mol Biol, 2016, 55(3): 309-322.
|
23. |
Zhang S, Shu X, Tian X, et al. Enhanced formation and impaired degradation of neutrophil extracellular traps in dermatomyositis and polymyositis: a potential contributor to interstitial lung disease complications. Clin Exp Immunol, 2014, 177(1): 134-141.
|
24. |
Qiu Y, Zhu J, Bandi V, et al. Biopsy neutrophilia, neutrophil chemokine and receptor gene expression in severe exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2003, 168(8): 968-975.
|
25. |
Obermayer A, Stoiber W, Krautgartner WD, et al. New aspects on the structure of neutrophil extracellular traps from chronic obstructive pulmonary disease and in vitro generation. PLoS One, 2014, 9(5): e97784.
|
26. |
Grabcanovic-Musija F, Obermayer A, Stoiber W, et al. Neutrophil extracellular trap (NET) formation characterises stable and exacerbated COPD and correlates with airflow limitation. Respir Res, 2015, 16(1): 59.
|
27. |
Pedersen F, Marwitz S, Holz O, et al. Neutrophil extracellular trap formation and extracellular DNA in sputum of stable COPD patients. Respir Med, 2015, 109(10): 1360-1362.
|
28. |
Wright TK, Gibson PG, Simpson JL, et al. Neutrophil extracellular traps are associated with inflammation in chronic airway disease. Respirology, 2016, 21(3): 467-475.
|
29. |
Hoenderdos K, Condliffe A. The neutrophil in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol, 2013, 48(5): 531-539.
|
30. |
Morgan WJ, Butler SM, Johnson CA, et al. Epidemiologic study of cystic fibrosis: design and implementation of a prospective, multicenter, observational study of patients with cystic fibrosis in the U.S. and Canada. Pediatr Pulmonol, 1999, 28(4): 231-241.
|
31. |
Mall MA, Hartl D. CFTR: cystic fibrosis and beyond. Eur Respir J, 2014, 44(4): 1042-1054.
|
32. |
Marcos V, Zhou-Suckow Z, Onder Yildirim A, et al. Free DNA in cystic fibrosis airway fluids correlates with airflow obstruction. Mediators Inflamm, 2015, 2015: 408935.
|
33. |
Dwyer M, Shan Q, D'Ortona S, et al. Cystic fibrosis sputum DNA has NETosis characteristics and neutrophil extracellular trap release is regulated by macrophage migration-inhibitory factor. J Innate Immun, 2014, 6(6): 765-779.
|
34. |
Zhang Y, Guan L, Yu J, et al. Pulmonary endothelial activation caused by extracellular histones contributes to neutrophil activation in acute respiratory distress syndrome. Respir Res, 2016, 17(1): 155.
|
35. |
Gray RD, Hardisty G, Regan KH, et al. Delayed neutrophil apoptosis enhances NET formation in cystic fibrosis. Thorax, 2018, 73(2): 134-144.
|
36. |
Dubois AV, Gauthier A, Brea D, et al. Influence of DNA on the activities and inhibition of neutrophil serine proteases in cystic fibrosis sputum. Am J Respir Cell Mol Biol, 2012, 47(1): 80-86.
|
37. |
Murcia RY, Vargas A, Lavoie JP. The interleukin-17 induced activation and increased survival of equine neutrophils is insensitive to glucocorticoids. PLoS One, 2016, 11(5): e0154755.
|
38. |
da Cunha AA, Nunez NK, de Souza RG, et al. Recombinant human deoxyribonuclease therapy improves airway resistance and reduces DNA extracellular traps in a murine acute asthma model. Exp Lung Res, 2016, 42(2): 66-74.
|
39. |
da Cunha AA, Nunez NK, de Souza RG, et al. Recombinant human deoxyribonuclease attenuates oxidative stress in a model of eosinophilic pulmonary response in mice. Mol Cell Biochem, 2016, 413(1-2): 47-55.
|