1. |
World Health Organization . World health statistics 2019[EB/OL]. (2020-05-20) [2024-03-03]. https://apps. who. int/iris/bitstream/handle/10665/324835/9789241565707-eng. pdf?sequence=9&isAllowed=y.
|
2. |
Wang C, Xu JY, Yang L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study. Lancet, 2018, 391(10131): 1706-1717.
|
3. |
Moura PC, Raposo M, Vassilenko V, et al. Breath volatile organic compounds (VOCs) as biomarkers for the diagnosis of pathological conditions: a review. Biomed J, 2023, 46(4): 100623.
|
4. |
Thorn RMS, Greenman J. Microbial volatile compounds in health and disease conditions. J Breath Res, 2012, 6(2): 024001.
|
5. |
中华医学会呼吸病学分会. 早期肺癌诊断中国专家共识(2023年版). 中华结核和呼吸杂志, 2023, 46(1): 1-18.
|
6. |
Rubin R. First breathalyzer test to diagnose COVID-19. JAMA, 2022, 327(19): 1860.
|
7. |
Phillips CO, Syed Y, Mac Parthaláin N, et al. Machine learning methods on exhaled volatile organic compounds for distinguishing COPD patients from healthy controls. J Breath Res, 2012, 6(3): 036003.
|
8. |
Besa V, Teschler H, Kurth I, et al. Exhaled volatile organic compounds discriminate patients with chronic obstructive pulmonary disease from healthy subjects. Int J COPD, 2015, 10: 399-406.
|
9. |
Martinez-lozano SP, Meier L, Berchtold C, et al. Breath analysis in real time by mass spectrometry in chronic obstructive pulmonary disease. Respiration, 2014, 87(4): 301-310.
|
10. |
Basanta M, Ibrahim B, Dockry R, et al. Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary disease: a cross-sectional study. Respir Res, 2012, 13(1): 72.
|
11. |
Gaida A, Holz O, Nell C, et al. A dual center study to compare breath volatile organic compounds from smokers and non-smokers with and without COPD. J Breath Res, 2016, 10(2): 026006.
|
12. |
Rodríguez-aguilar M, Ramírez-garcía S, Ilizaliturri-hernández C, et al. Ultrafast gas chromatography coupled to electronic nose to identify volatile biomarkers in exhaled breath from chronic obstructive pulmonary diseases patients: a pilot study. Biomed Chromatogr, 2019, 33(12): e4684.
|
13. |
Scarlata S, Pennazza G, Santonico M, et al. Screening of obstructive sleep apnea syndrome by electronic-nose analysis of volatile organic compounds. Sci Rep, 2017, 7(1): 11938.
|
14. |
Phillip SC, Parthaláin NM, Syed Y, et al. Short-term intra-subject variation in exhaled volatile organic compounds (VOCs) in COPD patients and healthy controls and its effect on disease classification. Metabolites, 2014, 4(2): 300-318.
|
15. |
Pizzini a, Filipiak W, Wille J, et al. Analysis of volatile organic compounds in the breath of patients with stable or acute exacerbation of chronic obstructive pulmonary disease. J Breath Res, 2018, 12(3): 036002.
|
16. |
肖元弼, 罗一丁. Tenax-TA吸附管和热解吸技术在集体防护系统检测设备校准技术中的应用. 科技视界, 2016(5): 171-172.
|
17. |
郭玲, 邬红, 李强, 等. VOCs采集与分析技术在肺癌诊疗中的研究进展. 中国肺癌杂志, 2021, 24(11): 796-803.
|
18. |
邹雪, 张强领, 梁渠, 等. 国产质子转移反应质谱仪的发展现状. 世界科技研究与发展, 2022, 44(3): 354-370.
|
19. |
Ratiu IA, Bocos-bintintan V, Patrut A, et al. Discrimination of bacteria by rapid sensing their metabolic volatiles using an aspiration-type ion mobility spectrometer (a-IMS) and gas chromatography-mass spectrometry GC-MS. Anal Chim Acta, 2017, 982: 209-217.
|
20. |
Van berkel JJ, Dallinga JW, Möller GM, et al. A profile of volatile organic compounds in breath discriminates COPD patients from controls. Respir Med, 2010, 104: 557-563.
|
21. |
Rodríguez-aguilar M, Díaz de león-martínez L, Gorocica-rosete P, et al. Application of chemoresistive gas sensors and chemometric analysis to differentiate the fingerprints of global volatile organic compounds from diseases. Clin Chim Acta, 2021, 518: 83-92.
|
22. |
Binson VA, Subramoniam M, Mathew L, et al. Discrimination of COPD and lung cancer from controls through breath analysis using a self-developed e-nose. J Breath Res, 2021, 15(4).
|
23. |
Allers M, Langejuergen J, Gaida A, et al. Measurement of exhaled volatile organic compounds from patients with chronic obstructive pulmonary disease (COPD) using closed gas loop GC-IMS and GC-APCI-MS. J Breath Res, 2016, 10(2): 026004.
|
24. |
Jareño-esteban JJ, Muñoz-lucas MÁ, Gómez-martín Ó, et al. Study of 5 volatile organic compounds in exhaled breath in chronic obstructive pulmonary disease. Arch Bronconeumol (Engl Ed), 2017, 53(5): 251-256.
|
25. |
Kistenev YV, Karapuzikov AI, Kostyukova NY, et al. Screening of patients with bronchopulmonary diseases using methods of infrared laser photoacoustic spectroscopy and principal component analysis. J Biomed Opt, 2015, 20(6): 065001.
|
26. |
Binson VA, Subramoniam M, Mathew L, et al. Detection of COPD and lung cancer with electronic nose using ensemble learning methods. Clin Chim Acta, 2021, 523: 231-238.
|
27. |
Fens N, Roldaan AC, Van der schee MP, et al. External validation of exhaled breath profiling using an electronic nose in the discrimination of asthma with fixed airways obstruction and chronic obstructive pulmonary disease. Clin Exp llergy, 2011, 41(10): 1371-1378.
|
28. |
Dragonieri S, Quaranta VN, Carratu P, et al. Exhaled breath profiling in patients with COPD and OSA overlap syndrome: a pilot study. J Breath Res, 2016, 10(4): 041001.
|
29. |
Dragonieri S, Scioscia G, Quaranta VN, et al. Exhaled volatile organic compounds analysis by e-nose can detect idiopathic pulmonary fibrosis. J Breath Res, 2020, 14(4): 047101.
|
30. |
Finamore P, Pedone C, Lelli D, et al. Analysis of volatile organic compounds: an innovative approach to heart failure characterization in older patients. J Breath Res, 2018, 12(2): 026007.
|
31. |
Van velzen P, Brinkman P, Knobel HH, et al. Exhaled breath profiles before, during and after exacerbation of COPD: a prospective follow-up study. Copd, 2019, 16(5/6): 330-337.
|
32. |
Shafiek H, Fiorentino F, Merino JL, et al. Using the electronic nose to identify airway infection during COPD exacerbations. PLoS One, 2015, 10(9): e0135199.
|
33. |
Gaugg MT, Nussbaumer-ochsner Y, Bregy L, et al. Real-time breath analysis reveals specific metabolic signatures of COPD exacerbations. Chest, 2019, 156(2): 269-276.
|
34. |
Van geffen WH, Bruins M, Kerstjens HA. Diagnosing viral and bacterial respiratory infections in acute COPD exacerbations by an electronic nose: a pilot study. J Breath Res, 2016, 10(3): 036001.
|
35. |
Kamal F, Kumar S, Edwards MR, et al. Virus-induced volatile organic compounds are detectable in exhaled breath during pulmonary infection. Am J Respir Crit Care Med, 2021, 204(9): 1075-1085.
|
36. |
Fens N, De nijs SB, Peters S, et al. Exhaled air molecular profiling in relation to inflammatory subtype and activity in COPD. Eur Respir J, 2011, 38(6): 1301-1309.
|
37. |
杨华静. 呼出气体挥发性有机化合物在区分慢性阻塞性肺疾病临床表型中的作用研究. 广东: 广州医科大学, 2022.
|
38. |
Hattesohl ADM, Jörres RA, Dressel H, et al. Discrimination between COPD patients with and without alpha 1-antitrypsin deficiency using an electronic nose. Respirology, 2011, 16(8): 1258-1264.
|
39. |
Malerba M, Ragnoli B, Radaeli A. Exhaled nitric oxide levels in alpha-1-antitrypsin PiMZ subjects. J Intern Med, 2009, 265(3): 382-387.
|
40. |
Incalzi RA, Pennazza G, Scarlata S, et al. Reproducibility and respiratory function correlates of exhaled breath fingerprint in chronic obstructive pulmonary disease. PLoS One, 2012, 7(10): e45396.
|
41. |
Finamore P, Pedone C, Scarlata S, et al. Validation of exhaled volatile organic compounds analysis using electronic nose as index of COPD severity. Int J COPD, 2018, 13: 1441-1448. DOI: 10.2147/COPD.S159684. eCollection 2018.
|
42. |
Exarchos KP, Chronis C, Lipirou L, et al. Stratification of patients with chronic obstructive pulmonary disease using volatile organic compounds. Adv Exp Med Biol, 2021, 1337: 1-7.
|
43. |
Radogna AV, Siciliano PA, Sabina S, et al. A Low-cost breath analyzer module in domiciliary non-invasive mechanical ventilation for remote COPD patient monitoring. Sensors (Basel), 2020, 20(3): 653.
|