Citation: 贺玉林, 何茜. 慢性阻塞性肺疾病患者可治疗特质:寻找宿主微生物内型. Chinese Journal of Respiratory and Critical Care Medicine, 2024, 23(12): 887-893. doi: 10.7507/1671-6205.202409037 Copy
Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
1. | Ghebre M A, Bafadhel M, Desai D, et al. Biological clustering supports both "Dutch" and "British" hypotheses of asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol, 2015, 135(1): 63-72. |
2. | Siafakas N, Corlateanu A, Fouka E. Phenotyping Before Starting Treatment in COPD? COPD, 2017, 14(3): 367-374. |
3. | 曾子航, 陈燕, 龙颖姣. 嗜酸性粒细胞型慢性阻塞性肺疾病的研究进展. 结核与肺部疾病杂志, 2022, 3(1): 50-54. |
4. | Marchesi J R, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome, 2015, 3: 31. |
5. | Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2025 report) (EB/OL). Available at: https://goldcopd.org/2025-gold-report/. |
6. | Chen T, Yu W H, Izard J, et al. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford), 2010, 2010: baq13. |
7. | Zaura E, Nicu E A, Krom B P, et al. Acquiring and maintaining a normal oral microbiome: current perspective. Front Cell Infect Microbiol, 2014, 4: 85. |
8. | LaPorte D M, Waldman B J, Mont M A, et al. Infections associated with dental procedures in total hip arthroplasty. J Bone Joint Surg Br, 1999, 81(1): 56-59. |
9. | Shi T, Wang J, Dong J, et al. Periodontopathogens Porphyromonas gingivalis and Fusobacterium nucleatum and Their Roles in the Progression of Respiratory Diseases. Pathogens, 2023, 12(9). |
10. | Wu X, Chen J, Xu M, et al. 16S rDNA analysis of periodontal plaque in chronic obstructive pulmonary disease and periodontitis patients. J Oral Microbiol, 2017, 9(1): 1324725. |
11. | Zhang J, Wu Y, Liu J, et al. Differential Oral Microbial Input Determines Two Microbiota Pneumo-Types Associated with Health Status. Adv Sci (Weinh), 2022, 9(32): e2203115. |
12. | Sharma S, Gupta A, Verma A K, et al. Impact of Non-surgical Periodontal Therapy on Pulmonary functions, Periodontal Health and Salivary Matrix Metalloproteinase-8 of COPD Patients with Chronic Periodontitis: A Clinico-biochemical Study. Turk Thorac J, 2021, 22(4): 324-332. |
13. | Bassis C M, Erb-Downward J R, Dickson R P, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio, 2015, 6(2): e37. |
14. | Toivonen L, Hasegawa K, Waris M, et al. Early nasal microbiota and acute respiratory infections during the first years of life. Thorax, 2019, 74(6): 592-599. |
15. | Alvarez B M, Li C, Kuntz T M, et al. Differences of the Nasal Microbiome and Mycobiome by Clinical Characteristics of COPD Patients. Chronic Obstr Pulm Dis, 2022, 9(3): 309-324. |
16. | Park H, Shin J W, Park S G, et al. Microbial communities in the upper respiratory tract of patients with asthma and chronic obstructive pulmonary disease. PLoS One, 2014, 9(10): e109710. |
17. | Sulaiman I, Wu B G, Chung M, et al. Lower Airway Dysbiosis Augments Lung Inflammatory Injury in Mild-to-Moderate Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med, 2023, 208(10): 1101-1114. |
18. | Morris A, Beck J M, Schloss P D, et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med, 2013, 187(10): 1067-1075. |
19. | Erb-Downward J R, Thompson D L, Han M K, et al. Analysis of the lung microbiome in the "healthy" smoker and in COPD. PLoS One, 2011, 6(2): e16384. |
20. | Wu X, Wei X, Li X, et al. Diversity of Fungi and Bacteria in Bronchoalveolar Lavage Fluid during Development of Chronic Obstructive Pulmonary Disease. Jpn J Infect Dis, 2022, 75(6): 560-568. |
21. | Wu J, Zhang Y, Duan J, et al. A metagenomic next-generation sequencing (mNGS)-based analysis of bronchoalveolar lavage samples in patients with an acute exacerbation of chronic obstructive pulmonary disease. J Mol Histol, 2024, 55(5): 709-719. |
22. | Su Y C, Jalalvand F, Thegerstrom J, et al. The Interplay Between Immune Response and Bacterial Infection in COPD: Focus Upon Non-typeable Haemophilus influenzae. Front Immunol, 2018, 9: 2530. |
23. | Zeng Q, Jewell C M. Directing toll-like receptor signaling in macrophages to enhance tumor immunotherapy. Curr Opin Biotechnol, 2019, 60: 138-145. |
24. | Luo L, Tang J, Du X, et al. Chronic obstructive pulmonary disease and the airway microbiome: A review for clinicians. Respir Med, 2024, 225: 107586. |
25. | 李乃健, 戴周丽, 陈炽勇, 等. 通过粪菌移植建立慢性阻塞性肺疾病肠道菌群研究模型及其效果评价. 中国呼吸与危重监护杂志, 2021, 20(07): 465-471. |
26. | Dumas A, Bernard L, Poquet Y, et al. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell Microbiol, 2018, 20(12): e12966. |
27. | Liu Y, Huang Q, Zhuang Z, et al. Gut virome alterations in patients with chronic obstructive pulmonary disease. Microbiol Spectr, 2024, 12(7): e428723. |
28. | Yong W, Zhang L, Chen Y, et al. Jianpi Huatan Tongfu granule alleviates inflammation and improves intestinal flora in patients with acute exacerbation of chronic obstructive pulmonary disease. J Int Med Res, 2020, 48(4): 1220708787. |
29. | Kang H S, Rhee C K, Kim S K, et al. Comparison of the clinical characteristics and treatment outcomes of patients requiring hospital admission to treat eosinophilic and neutrophilic exacerbations of COPD. Int J Chron Obstruct Pulmon Dis, 2016, 11: 2467-2473. |
30. | Wang Z, Locantore N, Haldar K, et al. Inflammatory Endotype-associated Airway Microbiome in Chronic Obstructive Pulmonary Disease Clinical Stability and Exacerbations: A Multicohort Longitudinal Analysis. Am J Respir Crit Care Med, 2021, 203(12): 1488-1502. |
31. | Negewo N A, McDonald V M, Baines K J, et al. Peripheral blood eosinophils: a surrogate marker for airway eosinophilia in stable COPD. Int J Chron Obstruct Pulmon Dis, 2016, 11: 1495-1504. |
32. | 薛瑾, 崔亚楠, 陈平, 等. 血嗜酸粒细胞对慢性阻塞性肺疾病急性加重期激素治疗反应性和再入院的预测价值. 中华结核和呼吸杂志, 2019(06): 426-431. |
33. | Singh D, Kolsum U, Brightling C E, et al. Eosinophilic inflammation in COPD: prevalence and clinical characteristics. Eur Respir J, 2014, 44(6): 1697-1700. |
34. | Huang Y J, Sethi S, Murphy T, et al. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. J Clin Microbiol, 2014, 52(8): 2813-2823. |
35. | Leitao F F, Alotaibi N M, Ngan D, et al. Sputum Microbiome Is Associated with 1-Year Mortality after Chronic Obstructive Pulmonary Disease Hospitalizations. Am J Respir Crit Care Med, 2019, 199(10): 1205-1213. |
36. | Chiu Y C, Lee S W, Liu C W, et al. Comprehensive profiling of the gut microbiota in patients with chronic obstructive pulmonary disease of varying severity. PLoS One, 2021, 16(4): e249944. |
37. | 吴永红, 陈军, 罗洲. 慢性阻塞性肺疾病肠道微生态与炎症因子及临床指标的相关性. 实用医学杂志, 2020, 36(05): 634-638. |
38. | Mallia P, Message S D, Gielen V, et al. Experimental rhinovirus infection as a human model of chronic obstructive pulmonary disease exacerbation. Am J Respir Crit Care Med, 2011, 183(6): 734-742. |
39. | Molyneaux P L, Mallia P, Cox M J, et al. Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2013, 188(10): 1224-1231. |
40. | Li H, Wu X, Zeng H, et al. Unique microbial landscape in the human oropharynx during different types of acute respiratory tract infections. Microbiome, 2023, 11(1): 157. |
41. | Leitao F F, Takiguchi H, Akata K, et al. Effects of Inhaled Corticosteroid/Long-Acting beta(2)-Agonist Combination on the Airway Microbiome of Patients with Chronic Obstructive Pulmonary Disease: A Randomized Controlled Clinical Trial (DISARM). Am J Respir Crit Care Med, 2021, 204(10): 1143-1152. |
42. | Qi Y J, Sun X J, Wang Z, et al. Richness of sputum microbiome in acute exacerbations of eosinophilic chronic obstructive pulmonary disease. Chin Med J (Engl), 2020, 133(5): 542-551. |
43. | Rofael S, Brown J, Lipman M, et al. Impact of prophylactic and 'rescue pack' antibiotics on the airway microbiome in chronic lung disease. BMJ Open Respir Res, 2023, 10(1). |
44. | Patangia D V, Anthony R C, Dempsey E, et al. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen, 2022, 11(1): e1260. |
45. | McCarthy B, Casey D, Devane D, et al. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev, 2015(2): CD3793. |
46. | Melo-Dias S, Cabral M, Furtado A, et al. Responsiveness to pulmonary rehabilitation in COPD is associated with changes in microbiota. Respir Res, 2023, 24(1): 29. |
47. | Wolska M, Wypych T P, Rodriguez-Viso P. The Influence of Premature Birth on the Development of Pulmonary Diseases: Focus on the Microbiome. Metabolites, 2024, 14(7). |
48. | Schefold J C, Porz L, Uebe B, et al. Diminished HLA-DR expression on monocyte and dendritic cell subsets indicating impairment of cellular immunity in pre-term neonates: a prospective observational analysis. J Perinat Med, 2015, 43(5): 609-618. |
49. | Rito D C, Viehl L T, Buchanan P M, et al. Augmented Th17-type immune responses in preterm neonates exposed to histologic chorioamnionitis. Pediatr Res, 2017, 81(4): 639-645. |
50. | Arboleya S, Binetti A, Salazar N, et al. Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol, 2012, 79(3): 763-772. |
51. | Martinez F J, Han M K, Allinson J P, et al. At the Root: Defining and Halting Progression of Early Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med, 2018, 197(12): 1540-1551. |
52. | Panzer A R, Lynch S V, Langelier C, et al. Lung Microbiota Is Related to Smoking Status and to Development of Acute Respiratory Distress Syndrome in Critically Ill Trauma Patients. Am J Respir Crit Care Med, 2018, 197(5): 621-631. |
53. | Lai H C, Lin T L, Chen T W, et al. Gut microbiota modulates COPD pathogenesis: role of anti-inflammatory Parabacteroides goldsteinii lipopolysaccharide. Gut, 2022, 71(2): 309-321. |
54. | Young R P, Hopkins R J, Christmas T, et al. COPD prevalence is increased in lung cancer, independent of age, sex and smoking history. Eur Respir J, 2009, 34(2): 380-386. |
55. | Forder A, Zhuang R, Souza V G P, et al. Mechanisms Contributing to the Comorbidity of COPD and Lung Cancer. Int J Mol Sci, 2023, 24(3). |
56. | Tsay J J, Wu B G, Badri M H, et al. Airway Microbiota Is Associated with Upregulation of the PI3K Pathway in Lung Cancer. Am J Respir Crit Care Med, 2018, 198(9): 1188-1198. |
57. | Huang D, Su X, Yuan M, et al. The characterization of lung microbiome in lung cancer patients with different clinicopathology. Am J Cancer Res, 2019, 9(9): 2047-2063. |
58. | Shimizu M, Miyanaga A, Seike M, et al. The respiratory microbiome associated with chronic obstructive pulmonary disease comorbidity in non-small cell lung cancer. Thorac Cancer, 2022, 13(13): 1940-1947. |
59. | Zhuang H, Cheng L, Wang Y, et al. Dysbiosis of the Gut Microbiome in Lung Cancer. Front Cell Infect Microbiol, 2019, 9: 112. |
60. | Benfante A, Bellia M, Scichilone N, et al. Airway distensibility by HRCT in asthmatics and COPD with comparable airway obstruction. COPD, 2013, 10(5): 560-566. |
61. | Huang J T, Cant E, Keir H R, et al. Endotyping COPD, Bronchiectasis and the 'COPD-bronchiectasis Association'. Am J Respir Crit Care Med, 2022. |
62. | Jiao J, Jing W, Si Y, et al. The prevalence and severity of periodontal disease in Mainland China: Data from the Fourth National Oral Health Survey (2015-2016). J Clin Periodontol, 2021, 48(2): 168-179. |
63. | Gomes-Filho I S, Passos J S, Seixas D C S. Respiratory disease and the role of oral bacteria. J Oral Microbiol, 2010, 2. |
64. | Lin M, Li X, Wang J, et al. Saliva Microbiome Changes in Patients With Periodontitis With and Without Chronic Obstructive Pulmonary Disease. Front Cell Infect Microbiol, 2020, 10: 124. |
- 1. Ghebre M A, Bafadhel M, Desai D, et al. Biological clustering supports both "Dutch" and "British" hypotheses of asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol, 2015, 135(1): 63-72.
- 2. Siafakas N, Corlateanu A, Fouka E. Phenotyping Before Starting Treatment in COPD? COPD, 2017, 14(3): 367-374.
- 3. 曾子航, 陈燕, 龙颖姣. 嗜酸性粒细胞型慢性阻塞性肺疾病的研究进展. 结核与肺部疾病杂志, 2022, 3(1): 50-54.
- 4. Marchesi J R, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome, 2015, 3: 31.
- 5. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2025 report) (EB/OL). Available at: https://goldcopd.org/2025-gold-report/.
- 6. Chen T, Yu W H, Izard J, et al. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford), 2010, 2010: baq13.
- 7. Zaura E, Nicu E A, Krom B P, et al. Acquiring and maintaining a normal oral microbiome: current perspective. Front Cell Infect Microbiol, 2014, 4: 85.
- 8. LaPorte D M, Waldman B J, Mont M A, et al. Infections associated with dental procedures in total hip arthroplasty. J Bone Joint Surg Br, 1999, 81(1): 56-59.
- 9. Shi T, Wang J, Dong J, et al. Periodontopathogens Porphyromonas gingivalis and Fusobacterium nucleatum and Their Roles in the Progression of Respiratory Diseases. Pathogens, 2023, 12(9).
- 10. Wu X, Chen J, Xu M, et al. 16S rDNA analysis of periodontal plaque in chronic obstructive pulmonary disease and periodontitis patients. J Oral Microbiol, 2017, 9(1): 1324725.
- 11. Zhang J, Wu Y, Liu J, et al. Differential Oral Microbial Input Determines Two Microbiota Pneumo-Types Associated with Health Status. Adv Sci (Weinh), 2022, 9(32): e2203115.
- 12. Sharma S, Gupta A, Verma A K, et al. Impact of Non-surgical Periodontal Therapy on Pulmonary functions, Periodontal Health and Salivary Matrix Metalloproteinase-8 of COPD Patients with Chronic Periodontitis: A Clinico-biochemical Study. Turk Thorac J, 2021, 22(4): 324-332.
- 13. Bassis C M, Erb-Downward J R, Dickson R P, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio, 2015, 6(2): e37.
- 14. Toivonen L, Hasegawa K, Waris M, et al. Early nasal microbiota and acute respiratory infections during the first years of life. Thorax, 2019, 74(6): 592-599.
- 15. Alvarez B M, Li C, Kuntz T M, et al. Differences of the Nasal Microbiome and Mycobiome by Clinical Characteristics of COPD Patients. Chronic Obstr Pulm Dis, 2022, 9(3): 309-324.
- 16. Park H, Shin J W, Park S G, et al. Microbial communities in the upper respiratory tract of patients with asthma and chronic obstructive pulmonary disease. PLoS One, 2014, 9(10): e109710.
- 17. Sulaiman I, Wu B G, Chung M, et al. Lower Airway Dysbiosis Augments Lung Inflammatory Injury in Mild-to-Moderate Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med, 2023, 208(10): 1101-1114.
- 18. Morris A, Beck J M, Schloss P D, et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med, 2013, 187(10): 1067-1075.
- 19. Erb-Downward J R, Thompson D L, Han M K, et al. Analysis of the lung microbiome in the "healthy" smoker and in COPD. PLoS One, 2011, 6(2): e16384.
- 20. Wu X, Wei X, Li X, et al. Diversity of Fungi and Bacteria in Bronchoalveolar Lavage Fluid during Development of Chronic Obstructive Pulmonary Disease. Jpn J Infect Dis, 2022, 75(6): 560-568.
- 21. Wu J, Zhang Y, Duan J, et al. A metagenomic next-generation sequencing (mNGS)-based analysis of bronchoalveolar lavage samples in patients with an acute exacerbation of chronic obstructive pulmonary disease. J Mol Histol, 2024, 55(5): 709-719.
- 22. Su Y C, Jalalvand F, Thegerstrom J, et al. The Interplay Between Immune Response and Bacterial Infection in COPD: Focus Upon Non-typeable Haemophilus influenzae. Front Immunol, 2018, 9: 2530.
- 23. Zeng Q, Jewell C M. Directing toll-like receptor signaling in macrophages to enhance tumor immunotherapy. Curr Opin Biotechnol, 2019, 60: 138-145.
- 24. Luo L, Tang J, Du X, et al. Chronic obstructive pulmonary disease and the airway microbiome: A review for clinicians. Respir Med, 2024, 225: 107586.
- 25. 李乃健, 戴周丽, 陈炽勇, 等. 通过粪菌移植建立慢性阻塞性肺疾病肠道菌群研究模型及其效果评价. 中国呼吸与危重监护杂志, 2021, 20(07): 465-471.
- 26. Dumas A, Bernard L, Poquet Y, et al. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell Microbiol, 2018, 20(12): e12966.
- 27. Liu Y, Huang Q, Zhuang Z, et al. Gut virome alterations in patients with chronic obstructive pulmonary disease. Microbiol Spectr, 2024, 12(7): e428723.
- 28. Yong W, Zhang L, Chen Y, et al. Jianpi Huatan Tongfu granule alleviates inflammation and improves intestinal flora in patients with acute exacerbation of chronic obstructive pulmonary disease. J Int Med Res, 2020, 48(4): 1220708787.
- 29. Kang H S, Rhee C K, Kim S K, et al. Comparison of the clinical characteristics and treatment outcomes of patients requiring hospital admission to treat eosinophilic and neutrophilic exacerbations of COPD. Int J Chron Obstruct Pulmon Dis, 2016, 11: 2467-2473.
- 30. Wang Z, Locantore N, Haldar K, et al. Inflammatory Endotype-associated Airway Microbiome in Chronic Obstructive Pulmonary Disease Clinical Stability and Exacerbations: A Multicohort Longitudinal Analysis. Am J Respir Crit Care Med, 2021, 203(12): 1488-1502.
- 31. Negewo N A, McDonald V M, Baines K J, et al. Peripheral blood eosinophils: a surrogate marker for airway eosinophilia in stable COPD. Int J Chron Obstruct Pulmon Dis, 2016, 11: 1495-1504.
- 32. 薛瑾, 崔亚楠, 陈平, 等. 血嗜酸粒细胞对慢性阻塞性肺疾病急性加重期激素治疗反应性和再入院的预测价值. 中华结核和呼吸杂志, 2019(06): 426-431.
- 33. Singh D, Kolsum U, Brightling C E, et al. Eosinophilic inflammation in COPD: prevalence and clinical characteristics. Eur Respir J, 2014, 44(6): 1697-1700.
- 34. Huang Y J, Sethi S, Murphy T, et al. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. J Clin Microbiol, 2014, 52(8): 2813-2823.
- 35. Leitao F F, Alotaibi N M, Ngan D, et al. Sputum Microbiome Is Associated with 1-Year Mortality after Chronic Obstructive Pulmonary Disease Hospitalizations. Am J Respir Crit Care Med, 2019, 199(10): 1205-1213.
- 36. Chiu Y C, Lee S W, Liu C W, et al. Comprehensive profiling of the gut microbiota in patients with chronic obstructive pulmonary disease of varying severity. PLoS One, 2021, 16(4): e249944.
- 37. 吴永红, 陈军, 罗洲. 慢性阻塞性肺疾病肠道微生态与炎症因子及临床指标的相关性. 实用医学杂志, 2020, 36(05): 634-638.
- 38. Mallia P, Message S D, Gielen V, et al. Experimental rhinovirus infection as a human model of chronic obstructive pulmonary disease exacerbation. Am J Respir Crit Care Med, 2011, 183(6): 734-742.
- 39. Molyneaux P L, Mallia P, Cox M J, et al. Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2013, 188(10): 1224-1231.
- 40. Li H, Wu X, Zeng H, et al. Unique microbial landscape in the human oropharynx during different types of acute respiratory tract infections. Microbiome, 2023, 11(1): 157.
- 41. Leitao F F, Takiguchi H, Akata K, et al. Effects of Inhaled Corticosteroid/Long-Acting beta(2)-Agonist Combination on the Airway Microbiome of Patients with Chronic Obstructive Pulmonary Disease: A Randomized Controlled Clinical Trial (DISARM). Am J Respir Crit Care Med, 2021, 204(10): 1143-1152.
- 42. Qi Y J, Sun X J, Wang Z, et al. Richness of sputum microbiome in acute exacerbations of eosinophilic chronic obstructive pulmonary disease. Chin Med J (Engl), 2020, 133(5): 542-551.
- 43. Rofael S, Brown J, Lipman M, et al. Impact of prophylactic and 'rescue pack' antibiotics on the airway microbiome in chronic lung disease. BMJ Open Respir Res, 2023, 10(1).
- 44. Patangia D V, Anthony R C, Dempsey E, et al. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen, 2022, 11(1): e1260.
- 45. McCarthy B, Casey D, Devane D, et al. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev, 2015(2): CD3793.
- 46. Melo-Dias S, Cabral M, Furtado A, et al. Responsiveness to pulmonary rehabilitation in COPD is associated with changes in microbiota. Respir Res, 2023, 24(1): 29.
- 47. Wolska M, Wypych T P, Rodriguez-Viso P. The Influence of Premature Birth on the Development of Pulmonary Diseases: Focus on the Microbiome. Metabolites, 2024, 14(7).
- 48. Schefold J C, Porz L, Uebe B, et al. Diminished HLA-DR expression on monocyte and dendritic cell subsets indicating impairment of cellular immunity in pre-term neonates: a prospective observational analysis. J Perinat Med, 2015, 43(5): 609-618.
- 49. Rito D C, Viehl L T, Buchanan P M, et al. Augmented Th17-type immune responses in preterm neonates exposed to histologic chorioamnionitis. Pediatr Res, 2017, 81(4): 639-645.
- 50. Arboleya S, Binetti A, Salazar N, et al. Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol, 2012, 79(3): 763-772.
- 51. Martinez F J, Han M K, Allinson J P, et al. At the Root: Defining and Halting Progression of Early Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med, 2018, 197(12): 1540-1551.
- 52. Panzer A R, Lynch S V, Langelier C, et al. Lung Microbiota Is Related to Smoking Status and to Development of Acute Respiratory Distress Syndrome in Critically Ill Trauma Patients. Am J Respir Crit Care Med, 2018, 197(5): 621-631.
- 53. Lai H C, Lin T L, Chen T W, et al. Gut microbiota modulates COPD pathogenesis: role of anti-inflammatory Parabacteroides goldsteinii lipopolysaccharide. Gut, 2022, 71(2): 309-321.
- 54. Young R P, Hopkins R J, Christmas T, et al. COPD prevalence is increased in lung cancer, independent of age, sex and smoking history. Eur Respir J, 2009, 34(2): 380-386.
- 55. Forder A, Zhuang R, Souza V G P, et al. Mechanisms Contributing to the Comorbidity of COPD and Lung Cancer. Int J Mol Sci, 2023, 24(3).
- 56. Tsay J J, Wu B G, Badri M H, et al. Airway Microbiota Is Associated with Upregulation of the PI3K Pathway in Lung Cancer. Am J Respir Crit Care Med, 2018, 198(9): 1188-1198.
- 57. Huang D, Su X, Yuan M, et al. The characterization of lung microbiome in lung cancer patients with different clinicopathology. Am J Cancer Res, 2019, 9(9): 2047-2063.
- 58. Shimizu M, Miyanaga A, Seike M, et al. The respiratory microbiome associated with chronic obstructive pulmonary disease comorbidity in non-small cell lung cancer. Thorac Cancer, 2022, 13(13): 1940-1947.
- 59. Zhuang H, Cheng L, Wang Y, et al. Dysbiosis of the Gut Microbiome in Lung Cancer. Front Cell Infect Microbiol, 2019, 9: 112.
- 60. Benfante A, Bellia M, Scichilone N, et al. Airway distensibility by HRCT in asthmatics and COPD with comparable airway obstruction. COPD, 2013, 10(5): 560-566.
- 61. Huang J T, Cant E, Keir H R, et al. Endotyping COPD, Bronchiectasis and the 'COPD-bronchiectasis Association'. Am J Respir Crit Care Med, 2022.
- 62. Jiao J, Jing W, Si Y, et al. The prevalence and severity of periodontal disease in Mainland China: Data from the Fourth National Oral Health Survey (2015-2016). J Clin Periodontol, 2021, 48(2): 168-179.
- 63. Gomes-Filho I S, Passos J S, Seixas D C S. Respiratory disease and the role of oral bacteria. J Oral Microbiol, 2010, 2.
- 64. Lin M, Li X, Wang J, et al. Saliva Microbiome Changes in Patients With Periodontitis With and Without Chronic Obstructive Pulmonary Disease. Front Cell Infect Microbiol, 2020, 10: 124.
-
Previous Article
血管介入栓塞辅助下支气管镜技术诊断并局部治疗成人支气管黏液表皮样癌病例报道一例 -
Next Article
家庭经鼻高流量氧疗在慢性阻塞性肺疾病中的应用研究进展