1. |
Tokumitsu K, Sugawara N, Maruo K, et al. Prevalence of perinatal depression among Japanese women: a meta-analysis. Ann Gen Psychiatry, 2020, 19(1): 41.
|
2. |
Hahn-Holbrook J, Cornwell-Hinrichs T, Anaya I. Economic and health predictors of national postpartum depression prevalence: a systematic review, meta-analysis, and meta-regression of 291 studies from 56 countries. Front Psychiatry, 2017, 8: 248.
|
3. |
庄幼青, 蒋翠婷, 曾丽玲, 等. 产妇心理弹性在产后负性生活事件与产后抑郁间的中介效应. 解放军护理杂志, 2021, 38(12): 18-21.
|
4. |
Oliveira TA, Luzetti G, Rosalem MMA, et al. Screening of perinatal depression using the Edinburgh postpartum depression scale. Rev Bras Ginecol Obstet, 2022, 44(5): 452-457.
|
5. |
林雪梅, 杨建辉, 陈佩珊, 等. 母亲孕期或产后抑郁情绪对子代情绪和行为的影响: Meta分析. 中华实用儿科临床杂志, 2022, 37(4): 284-289.
|
6. |
Farias-Antunez S, Xavier MO, Santos IS. Effect of maternal postpartum depression on offspring's growth. J Affect Disord, 2018, 228: 143-152.
|
7. |
Siu AL, Force USPST, Bibbins-Domingo K, et al. Screening for depression in sdults: US Preventive Services Task Force recommendation Statement. JAMA, 2016, 315(4): 380-7.
|
8. |
Moons KG, De Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med, 2014, 11(10): e1001744.
|
9. |
陈香萍, 张奕, 庄一渝, 等. PROBAST: 诊断或预后多因素预测模型研究偏倚风险的评估工具. 中国循证医学杂志, 2020, 20(6): 737-744.
|
10. |
Amit G, Girshovitz I, Marcus K, et al. Estimation of postpartum depression risk from electronic health records using machine learning. BMC Pregnancy Childbirth, 2021, 21(1): 630.
|
11. |
Hochman E, Feldman B, Weizman A, et al. Development and validation of a machine learning-based postpartum depression prediction model: a nationwide cohort study. Depress Anxiety, 2021, 38(4): 400-411.
|
12. |
Matsuo S, Ushida T, Emoto R, et al. Machine learning prediction models for postpartum depression: a multicenter study in Japan. J Obstet Gynaecol Res, 2022, 48(7): 1775-1785.
|
13. |
Reps JM, Wilcox M, Mcgee BA, et al. Development of multivariable models to predict perinatal depression before and after delivery using patient reported survey responses at weeks 4-10 of pregnancy. BMC Pregnancy Childbirth, 2022, 22(1): 442.
|
14. |
Shin D, Lee KJ, Adeluwa T, et al. Machine learning-based predictive modeling of postpartum depression. J Clin Med, 2020, 9(9): 2899.
|
15. |
Yang ST, Yang SQ, Duan KM, et al. The development and application of a prediction model for postpartum depression: optimizing risk assessment and prevention in the clinic. J Affect Disord, 2022, 296: 434-442.
|
16. |
Zhang Y, Wang S, Hermann A, et al. Development and validation of a machine learning algorithm for predicting the risk of postpartum depression among pregnant women. J Affect Disord, 2021, 279: 1-8.
|
17. |
蔡飞亚, 况利, 王我, 等. 基于社会心理因素的产后抑郁症模型的建立和评价. 第二军医大学学报, 2017, 38(4): 476-481.
|
18. |
肖美丽, 晏春丽, 付冰, 等. 随机森林算法在产后抑郁风险预测中的应用. 中南大学学报(医学版), 2020, 45(10): 1215-1222.
|
19. |
Munk-Olsen T, Liu X, Madsen KB, et al. Postpartum depression: a developed and validated model predicting individual risk in new mothers. Transl Psychiatry, 2022, 12(1): 419.
|
20. |
Moraes GP, Lorenzo L, Pontes GA, et al. Screening and diagnosing postpartum depression: when and how. Trends Psychiatry Psychother, 2017, 39(1): 54-61.
|
21. |
Ogundimu EO, Altman DG, Collins GS. Adequate sample size for developing prediction models is not simply related to events per variable. J Clin Epidemiol, 2016, 76: 175-182.
|
22. |
卢振玲, 裴宇权, 李晖, 等. 围手术期非计划性低体温风险预测模型的系统评价. 中国护理管理, 2022, 22(6): 881-887.
|
23. |
Scoppetta O, Cassiani-Miranda CA, Arocha-Diaz KN, et al. Validity of the patient health questionnaire-2 (PHQ-2) for the detection of depression in primary care in Colombia. J Affect Disord, 2021, 278: 576-582.
|
24. |
吴尧, 谢碧姣, 王丹心, 等. 康复期脑卒中患者跌倒风险预测模型的系统评价. 中华护理杂志, 2022, 57(12): 1440-1446.
|
25. |
谢晓冉, 徐蓉. 糖尿病足发病风险预测模型的系统评价. 中华护理杂志, 2021, 56(1): 124-131.
|
26. |
Upadhyay RP, Chowdhury R, Aslyeh S, et al. Postpartum depression in India: a systematic review and meta-analysis. Bull World Health Organ, 2017, 95(10): 706C-717C.
|
27. |
Pampaka D, Papatheodorou SI, Alseaidan M, et al. Postnatal depressive symptoms in women with and without antenatal depressive symptoms: results from a prospective cohort study. Arch Womens Ment Health, 2019, 22(1): 93-103.
|
28. |
孔令华, 王馨悦, 孙珏, 等. 苏州市某社区产后抑郁流行病学调查及相关危险因素. 四川精神卫生, 2018, 31(2): 152-155.
|
29. |
Oztora S, Arslan A, Caylan A, et al. Postpartum depression and affecting factors in primary care. Niger J Clin Pract, 2019, 22(1): 85-91.
|
30. |
李海滟, 朱贝贝, 陶芳标. 妊娠糖尿病与围生期抑郁关系的研究进展. 现代预防医学, 2021, 48(10): 1802-1805.
|
31. |
Schmidt P, Longoni A, Pinheiro RT, et al. Postpartum depression in maternal thyroidal changes. Thyroid Res, 2022, 15(1): 6.
|
32. |
Wesseloo R, Kamperman AM, Bergink V, et al. Thyroid peroxidase antibodies during early gestation and the subsequent risk of first-onset postpartum depression: a prospective cohort study. J Affect Disord, 2018, 225: 399-403.
|
33. |
祝颖, 陈一丹, 韩怡雯, 等. 产后抑郁症与甲状腺功能关系的研究进展. 中国现代医生, 2019, 57(35): 165-168.
|
34. |
鲍慈青, 乐涛, 孙诗雨, 等. 孕早期和孕晚期促甲状腺激素水平对产妇产后抑郁的影响. 中国妇幼保健, 2022, 37(7): 1163-1166.
|
35. |
王凯璇, 吴鸿雁, 姚欢杰, 等. 18 kDa转位蛋白联合四氢孕酮血浆含量改变对产后抑郁症的预测价值. 河北医药, 2021, 43(22): 3393-3396.
|
36. |
刘嫣, 齐伟静, 胡洁. 人际心理疗法对产后抑郁的治疗效果. 解放军护理杂志, 2018, 35(14): 27-30.
|