1. |
Kulkarni S, Seneviratne N, Baig MS, et al. Artificial intelligence in medicine: where are we now. Acad Radiol, 2020, 27(1): 62-70.
|
2. |
Hassoun S, Jefferson F, Shi X, et al. Artificial intelligence for biology. Integr Comp Biol, 2022, 61(6): 2267-2275.
|
3. |
Xue Y, Chen C, Tan R, et al. Artificial intelligence-assisted bioinformatics, microneedle, and diabetic wound healing: a "new deal" of an old drug. ACS Appl Mater Interfaces, 2022, 14(33): 37396-37409.
|
4. |
Gore JC. Artificial intelligence in medical imaging. Magn Reson Imaging, 2020, 68: A1-A4.
|
5. |
Falini S, Angelotti G, Cecconi M. ICU management based on big data. Curr Opin Anaesthesiol, 2020, 33(2): 162-169.
|
6. |
Pollard TJ, Johnson AEW, Raffa JD, et al. The eICU collaborative research database, a freely available multi-center database for critical care research. Sci Data, 2018, 5: 180178.
|
7. |
Wu WT, Li YJ, Feng AZ, et al. Data mining in clinical big data: the frequently used databases, steps, and methodological models. Mil Med Res, 2021, 8(1): 44.
|
8. |
Hong N, Liu C, Gao J, et al. State of the art of machine learning-enabled clinical decision support in intensive care units: literature review. JMIR Med Inform, 2022, 10(3): e28781.
|
9. |
Arora G, Joshi J, Mandal RS, et al. Artificial intelligence in surveillance, diagnosis, drug discovery and vaccine development against COVID-19. Pathogens, 2021, 10(8): 1048.
|
10. |
任全娥. 我国文献计量学研究40年—基于知识图谱的回顾与展望. 信息与管理研究, 2020, 5(Z2): 16-31.
|
11. |
陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能. 科学学研究, 2015, 33(2): 242-253.
|
12. |
Johnson AE, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible critical care database. Sci Data, 2016, 3: 160035.
|
13. |
Schwalbe N, Wahl B. Artificial intelligence and the future of global health. Lancet, 2020, 395(10236): 1579-1586.
|
14. |
Beil M, Proft I, van Heerden D, et al. Ethical considerations about artificial intelligence for prognostication in intensive care. Intensive Care Med Exp, 2019, 7(1): 70.
|
15. |
Wang J, Deng H, Liu B, et al. Systematic evaluation of research progress on natural language processing in medicine over the past 20 years: bibliometric study on PubMed. J Med Internet Res, 2020, 22(1): e16816.
|
16. |
耿溪谣, 胡洋. 全球价值链视角下中国与印度信息产业国际竞争力的比较分析. 世界地理研究, 2022, 31(2): 270-279.
|
17. |
薛博. 关于电子信息技术的发展现状及趋势. 信息系统工程, 2023, (4): 137-139.
|
18. |
Seah JCY, Tang JSN, Kitchen A, et al. Chest radiographs in congestive heart failure: visualizing neural network learning. Radiology, 2019, 290(2): 514-522.
|
19. |
Horng S, Liao R, Wang X, et al. Deep learning to quantify pulmonary edema in chest radiographs. Radiol Artif Intell, 2021, 3(2): e190228.
|
20. |
Monteiro M, Newcombe VFJ, Mathieu F, et al. Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study. Lancet Digit Health, 2020, 2(6): e314-e322.
|
21. |
Chen L, Ogundele O, Clermont G, et al. Dynamic and personalized risk forecast in step-down units: implications for monitoring paradigms. Ann Am Thorac Soc, 2017, 14(3): 384-391.
|
22. |
Joosten A, Rinehart J, Van der Linden P, et al. Computer-assisted individualized hemodynamic management reduces intraoperative hypotension in intermediate- and high-risk surgery: a randomized controlled trial. Anesthesiology, 2021, 135(2): 258-272.
|
23. |
Lassau N, Ammari S, Chouzenoux E, et al. Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients. Nat Commun, 2021, 12(1): 634.
|
24. |
Seymour CW, Kennedy JN, Wang S, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for Sepsis. JAMA, 2019, 321(20): 2003-2017.
|
25. |
Calfee CS, Delucchi KL, Sinha P, et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med, 2018, 6(9): 691-698.
|
26. |
Gurovich Y. The path to and impact of disease recognition with AI. IEEE Pulse, 2020, 11(1): 13-16.
|
27. |
Khanagar SB, Al-Ehaideb A, Vishwanathaiah S, et al. Scope and performance of artificial intelligence technology in orthodontic diagnosis, treatment planning, and clinical decision-making - a systematic review. J Dent Sci, 2021, 16(1): 482-492.
|
28. |
袁波, 代华, 伍佳, 等. 人工智能在全科医学领域的应用. 中华全科医学, 2021, 19(9): 5.
|
29. |
杨文静, 杜然然, 吕章艳, 等. 人工智能在疾病预测研究中可视化分析. 中国公共卫生, 2021, 37(5): 871-874.
|
30. |
顾坚磊, 江建平, 田园, 等. 人工智能技术的应用: 罕见病临床决策系统的需求、现状与挑战. 第二军医大学学报, 2018, 39(8): 819-825.
|
31. |
Zhang Z, Van Poucke S, Goyal H, et al. The top 2, 000 cited articles in critical care medicine: a bibliometric analysis. J Thorac Dis, 2018, 10(4): 2437-2447.
|
32. |
van de Sande D, van Genderen ME, Huiskens J, et al. Moving from bytes to bedside: a systematic review on the use of artificial intelligence in the intensive care unit. Intensive Care Med, 2021, 47(7): 750-760.
|
33. |
李梦薇, 高芳, 徐峰. 人工智能应用场景的成熟度评价研究. 情报杂志, 2022, 41(12): 176-183.
|
34. |
Tang R, Zhang S, Ding C, et al. Artificial intelligence in intensive care medicine: bibliometric analysis. J Med Internet Res, 2022, 24(11): e42185.
|