1. |
吴光耀, 孙骏谟, 田志雄. 活体质子磁共振波谱技术分析. 国际医学放射学杂志, 2001, 24(006): 347-350.
|
2. |
陈星荣, 董炳麟, 沈天真. 磁共振波谱分析(一). 上海生物医学工程, 1994, 2(2): 48-49.
|
3. |
Baslow MH. Evidence supporting a role for N-acetyl-L-aspartate as a molecular water pump in myelinated neurons in the central nervous system. An analytical review. Neurochem Int, 2002, 40(4): 295-300.
|
4. |
Gonen OM, Moffat BA, Desmond PM, et al. Seven-tesla quantitative magnetic resonance spectroscopy of glutamate, γ-aminobutyric acid, and glutathione in the posterior cingulate cortex/precuneus in patients with epilepsy. Epilepsia, 2020, 61(12): 2785-2794.
|
5. |
Nicolo JP, O'Brien TJ, Kwan P. Role of cerebral glutamate in post-stroke epileptogenesis. Neuroimage Clin, 2019, 24: 102069.
|
6. |
Drake M, Allegri RF, Thomson A. Executive cognitive alteration of prefrontal type in patients with mesial temporal lobe epilepsy. Medicina (B Aires), 2000, 60(4): 453-456.
|
7. |
Tan Q, Sun H, Wang W, et al. Quantitative MR spectroscopy reveals metabolic changes in the dorsolateral prefrontal cortex of patients with temporal lobe epilepsy. Eur Radiol, 2018, 28(11): 4496-4503.
|
8. |
Bernasconi A, Bernasconi N, Natsume J, et al. Magnetic resonance spectroscopy and imaging of the thalamus in idiopathic generalized epilepsy. Brain, 2003, 126: 2447-2454.
|
9. |
Zhang L, Li H, Hong P, Zou X. Proton magnetic resonance spectroscopy in juvenile myoclonic epilepsy: a systematic review and meta-analysis. Epilepsy Research, 2016, 121: 33-38.
|
10. |
Gilsoul M, Grisar T, Delgado-Escueta AV, et al. Subtle brain developmental abnormalities in the pathogenesis of juvenile myoclonic epilepsy. Front Cell Neurosci, 2019, 27: 433-448.
|
11. |
Hamelin S, Stupar V, Mazière L, et al. In vivo γ-aminobutyric acid increase as a biomarker of the epileptogenic zone: an unbiased metabolomics approach. Epilepsia, 2021, 62(1): 163-175.
|
12. |
Wu HC, Dachet F, Ghoddoussi F, et al. Altered metabolomic-genomic signature: a potential noninvasive biomarker of epilepsy. Epilepsia, 2017, 58(9): 1626-1636.
|
13. |
Liu D, Yang Y, Chen D, et al. Brain metabolic differences between temporal lobe epileptic seizures and organic non-epileptic seizures in postictal phase: a retrospective study with magnetic resonance spectroscopy. Quant Imaging Med Surg, 2021, 11(8): 3781-3791.
|
14. |
Turnbull J, Tiberia E, Striano P, et al. Lafora disease. Epileptic Disord, 2016, 18(s2): S38-S62.
|
15. |
Swain L, Key G, Tauro A, et al. Lafora disease in miniature wire- haired dachshunds. PLoS One, 2017, 12(8): 1-13.
|
16. |
Neringa A, Katrin B, Matthias D, et al. Brain proton magnetic resonance spectroscopy findings in a Beagle dog with genetically confirmed Lafora disease. J Vet Intern Med, 2020, 34: 1594-1598.
|
17. |
Burgos DF, Cussó L, Sánchez-Elexpuru G, et al. Structural and functional brain abnormalities in mouse models of Lafora disease. Int J Mol Sci, 2020, 21: 7771.
|
18. |
Neal A, Moffat BA, Stein JM, et al. Glutamate weighted imaging contrast in gliomas with 7 Tesla magnetic resonance imaging. Neuroimage Clin, 2019, 22: 101694.
|
19. |
Tao JX, Ray A, Hawes-Ebersole S, et al. Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia, 2005, 46(3): 669-676.
|
20. |
Adamczyk B, Węgrzyn K, Wilczyński T, et al. The most common lesions detected by neuroimaging as causes of epilepsy. Medicina (Kaunas), 2021, 22,57(3): 294.
|
21. |
Suhy J, Laxer KD, Capizzano AA, et al. 1H MRSI predicts surgical outcome in MRI-negative temporal lobe epilepsy. Neurology, 2002, 58(5): 821-823.
|
22. |
Savic I, Lekvall A, Greitz D, et al. MR spectroscopy shows reduced frontal lobe concentrations of N-acetyl aspartate in patients with juvenile myoclonic epilepsy. Epilepsia, 2000, 41(1): 290-296.
|
23. |
Kuzniecky R, Hetherington H, Pan J, et al. Proton spectroscopic imaging at 4. 1 tesla in patients with malformations of cortical development and epilepsy. Neurology, 1997, 48(4): 1018-1024.
|