陈勇军,
Email: 2212680954@qq.com
肠道微生物区系和微生物群在维持体内平衡和几乎所有身体系统中都发挥重要作用。肠道菌群通过化学信号、免疫途径、神经途径等对神经发生过程及神经元兴奋通路产生影响,从而调节中枢神经系统已有各项临床及临床前研究证实肠道菌群对癫痫的预后有改善。联合肠道微生物组治疗耐药性癫痫具有很好的前景,然而其抗癫痫的潜在机制尚不清楚,本文综述了脑肠轴、肠道菌群在疾病治疗及预后的应用上的最新进展,探讨了以肠道菌群为靶点的抗癫痫的作用机制。
Citation: 翟锦霞, 陈勇军. 以肠道菌群为靶点的耐药性癫痫的联合抗癫痫治疗策略. Journal of Epilepsy, 2022, 8(3): 264-272. doi: 10.7507/2096-0247.202112011 Copy
1. | Sandhu KV, Sherwin E, Schellekens H, et al. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res, 2017, 179: 223-244. |
2. | Perez-Muñoz M E, Arrieta M C, Ramer-Tait A E, et al. A critical assessment of the "sterile womb" and "in utero colonization" hypotheses: Implications for research on the pioneer infant microbiome. Microbiome, 2017, 5(1): 48. |
3. | Caballero L, Silvia GM, Sita T, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gamma delta T cells. Nature medicine, 2016, 22(5): 516-523. |
4. | Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science, 2013, 342(6161): 971-976. |
5. | Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol, 2005, 3(10): 777-788. |
6. | Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 2013, 155(7): 1451-1463. |
7. | Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science, 2015, 350(6264): 1084-1089. |
8. | Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science, 2015, 350(6264): 1079-1084. |
9. | Konishi H, Fujiya M, Tanaka H, et al. Probioticderived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat Commun, 2016, 7: 1-5. |
10. | Chen Z, Guo L, Zhang Y, et al. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest, 2014, 124(8): 3391-3406. |
11. | Duan F, Curtis KL, March JC. Secretion of insulinotropic proteins by commensal bacteria: rewiring the gut to treat diabetes. Appl Environ Microbiol, 2008, 74(23): 7437-7438. |
12. | Duan FF, Liu JH, March JC. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes, 2015, 64(5): 1794-1803. |
13. | Liu C, Cheung W-H, Li J, et al. Understanding the gut microbiota and sarcopenia: A systematic review. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12(6): 1393-1407. |
14. | Arun K B, Madhavan A, Sindhu R, et al. Probiotics and gut microbiome - prospects and challenges in remediating heavy metal toxicity. J Hazard Mater, 2021, 420: 126676. |
15. | Han H, Yi B, Zhong R, et al. From gut microbiota to host appetite: Gut microbiota-derived metabolites as key regulators. Microbiome, 2021, 9(1): 162. |
16. | Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature, 2012, 488(7410): 178-184. |
17. | Chung Y C, Jin H M, Cui Y, et al. Fermented milk of Lactobacillus helveticus IDCC3801 improves cognitive functioning during cognitive fatigue tests in healthy older adults. Journal of Functional Foods, 2014, 10: 465-474. |
18. | Berer K, Gerdes LA, Cekanaviciute E, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40): 10719-10724. |
19. | Mazmanian SK, Liu CH, Tzianabos AO, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell, 2005, 122(1): 107-118. |
20. | Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature, 2011, 479(7374): 538. |
21. | Stokes JM, Davis JH, Mangat CS, et al. Discovery of a small molecule that inhibits bacterial ribosome biogenesis. Elife, 2014, 3: e03574. |
22. | Humann J, Mann B, Gao G, et al. Bacterial peptidoglycan traverses the placenta to induce fetal neuroproliferation and aberrant postnatal behavior. Cell Host & Microbe, 2016, 19(6): 901. |
23. | Hoban A, Stilling R, Desbonnet L, et al. Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry, 2016, 6(4): e774. |
24. | Geuking M, Ca Henzli J, Lawson M E, et al. Intestinal bacterial colonization induces mutualistic regulatory t cell responses. Immunity, 2011, 34(6): 794-806. |
25. | Xie G, Zhou Q, Qiu CZ, et al. Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World Journal of Gastroenterology, 2017, 23(33): 6164-6171. |
26. | Holmes M, Flaminio Z, Vardhan M, et al. Cross talk between drug‐resistant epilepsy and the gut microbiome. Epilepsia, 2020, 61(12): 2619-2628. |
27. | Round JL, Lee SM, Li J, et al. The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science, 2011, 332(6032): 974-977. |
28. | Wu J, Zhang Y, Yang H, et al. Intestinal microbiota as an alternative therapeutic target for epilepsy. Can J Infect Dis Med Microbiol, 2016, 21: 1-6. |
29. | Bravo JA, Forsythe P, Chew MV, et al. Ingestion of lactobacillus strain regulates emotional behavior and central gaba receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(38): 16050-16055. |
30. | Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol, 2021, 19(4): 241-255. |
31. | Ivanov, Ii, Atarashi K, Manel N, et al. Induction of intestinal th17 cells by segmented filamentous bacteria. Cell, 2009, 139(3): 485-498. |
32. | De Caro C, Iannone L F, Citraro R, et al. Can we 'seize' the gut microbiota to treat epilepsy? Neurosci Biobehav Rev, 2019. 107: 750-764. |
33. | Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med, 2014, 6(263): 263ra158. |
34. | Van De Wouw M, Boehme M, Lyte JM, et al. Short-chain fatty acids: Microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol, 2018, 596(20): 4923-4944. |
35. | Schroeder BO, Bckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nature Medicine, 2016, 22(10): 1079. |
36. | Belkaid Y , Hand T, Role of the microbiota in immunity and inflammation. Cell, 2014, 157(1): 121-141. |
37. | Smith K, Mccoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Seminars in Immunology, 2007, 19(2): 59-69. |
38. | Sharon G, Sampson T, Geschwind D, et al. The central nervous system and the gut microbiome. Cell, 2016, 167(4): 915-932. |
39. | Borghi E, Vignoli A. Rett syndrome and other neurodevelopmental disorders share common changes in gut microbial community: a descriptive review. International Journal of Molecular Sciences, 2019, 20(17): 4160. |
40. | Tremlett H, Fadrosh DW, Faruqi AA, et al. Gut microbiota in early pediatric multiple sclerosis: A case-control study. European Journal of Neurology, 2016, 23(8): 1308-1321. |
41. | Kang DW, Adams JB, Gregory AC, et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome, 2017, 5(1): 10. |
42. | Forsyth C, Shannon K M, Kordower J H, et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early parkinson's disease. Plos One, 2011, 6(12): e28032. |
43. | Hilton D, Stephens M, Kirk L, et al. Accumulation of α-synuclein in the bowel of patients in the pre-clinical phase of parkinson's disease. Acta Neuropathologica, 2014, 127(2): 235-241. |
44. | Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiology of Aging, 2017, 49: 60-68. |
45. | Sun J, Wang F, Ling Z, et al. Clostridium butyricum attenuates cerebral ischemia/reperfusion injury in diabetic mice via modulation of gut microbiota. Brain Research, 2016, 1642: 180-188. |
46. | Bogiatzi C, Gloor G, Allen-Vercoe E, et al. Metabolic products of the intestinal microbiome and extremes of atherosclerosis. Atherosclerosis, 2018, 273: 91-97. |
47. | Jia Y, Liao S I, He Y, et al. Dysbiosis of gut microbiota with reduced trimethylaminenoxide level in patients with large‐artery atherosclerotic stroke or transient ischemic attack. Journal of the American Heart Association, 2015, 4(11): e002699. |
48. | Nagpal J, Cryan JF. Microbiota-brain interactions: moving toward mechanisms in model organisms. Neuron, 2021, 5: 152-156. |
49. | Godfrey JBW. Misleading presentation of epilepsy in elderly people. Age & Ageing, 1989, (1): 17-20. |
50. | Brodie MJ, Elder AT, Kwan P. Epilepsy in later life. Lancet Neurology, 2009, 8(11): 1019-1030. |
51. | Martin Y, Artaz M, Bornand-Rousselot A. Nonconvulsive status epilepticus in the elderly. Journal of the American Geriatrics Society, 2014, 52(3): 162-168. |
52. | Kobow K, Auvin S, Jensen F, et al. Finding a better drug for epilepsy: Antiepileptogenesis targets. Epilepsia, 2012, 53(11): 1868-1876. |
53. | Arul A, Tan QY. Balasubramaniam V R, et al. Gut microbiota and epilepsy:a systematic review on their relationship and possible therapeutics. ACS Chemical Neuroscience, 2020, 11(21): 256-262. |
54. | Şafak B, Altunan B, Topçu B, et al. The gut microbiome in epilepsy. Microb Pathog, 2020, 139: 103853. |
55. | Guerriero RM, Giza CC, Rotenberg A. Glutamate and gaba imbalance following traumatic brain injury. Curr Neurol Neurosci Rep, 2015, 15(5): 27. |
56. | Riazi K, Galic MA, Kuzmiski JB, et al. Microglial activation and tnfalpha production mediate altered cns excitability following peripheral inflammation. Proc Natl Acad Sci USA, 2008, 105(44): 17151-17156. |
57. | Riazi K, Galic MA, Pittman QJ. Contributions of peripheral inflammation to seizure susceptibility: cytokines and brain excitability. Epilepsy Res, 2010, 89(1): 34-42. |
58. | Riazi K, Honar H, Homayoun H, et al. Intestinal inflammation alters the susceptibility to pentylenetetrazole induced seizure in mice. J Gastroenterol Hepatol, 2004, 19(3): 270-277. |
59. | Atarashi K, Tanoue T, Ando M, et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell, 2015, 163(2): 367-380. |
60. | Javdan B, Lopez JG, Chankhamjon P, et al. Personalized mapping of drug metabolism by the human gut microbiome. Cell, 2020, 181(7): 1661-1679. |
61. | Cowan CSM, Hoban AE, Ventura-Silva AP, et al. Gutsy moves: the amygdala as a critical node in microbiota to brain signaling. Bioessays, 2018, 40(1): 42-48. |
62. | Lindefeldt M, Eng A, Darban H, et al. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. Npj Biofilms & Microbiomes, 2019, 5(1): 69-74. |
63. | Bedarf J R, Hildebrand F, Coelho L P, et al. Functional implications of microbial and viral gut metagenome changes in early stage l-dopa-nave parkinson's disease patients. Genome Medicine, 2017, 9(1): 39-45. |
64. | Sun Y, Su Y, Zhu W, Microbiome-metabolome responses in the cecum and colon of pig to a high resistant starch diet. Front Microbiol, 2016, 7: 779-782. |
65. | Li Y, Li J, Xu F, et al. Gut microbiota as a potential target for developing anti-fatigue foods. Crit Rev Food Sci Nutr, 2021, 23(1): 1-16. |
66. | Bloom PP, Tapper EB, Young VB, et al. Microbiome therapeutics for hepatic encephalopathy. J Hepatol, 2021, 75(6): 1452-1464. |
67. | Dayan CM, Besser REJ, Oram RA, et al. Preventing type 1 diabetes in childhood. Science, 2021, 373(6554): 506-510. |
68. | Das G, Heredia JB, De Lourdes PM, et al. Korean traditional foods as antiviral and respiratory disease prevention and treatments: A detailed review. Trends Food Sci Technol, 2021, 116: 415-433. |
69. | Hu Y, He J, Zheng P, et al. Prebiotic inulin as a treatment of obesity related nonalcoholic fatty liver disease through gut microbiota: A critical review. Crit Rev Food Sci Nutr, 2021, 12(1): 1-11. |
70. | Kang DW, Adams JB, Coleman DM, et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci Rep, 2019, 9(1): 5821. |
71. | Adelman MW, Woodworth MH, Langelier C, et al. The gut microbiome's role in the development, maintenance, and outcomes of sepsis. Crit Care, 2020, 24(1): 278-286. |
72. | Tankou SK, Regev K, Healy BC, et al. A probiotic modulates the microbiome and immunity in multiple sclerosis. Ann Neurol, 2018, 83(6): 1147-1161. |
73. | Bagheri S, Heydari A, Alinaghipour A, et al. Effect of probiotic supplementation on seizure activity and cognitive performance in ptz-induced chemical kindling. Epilepsy Behav, 2019, 95: 43-50. |
74. | Hampton T, Gut microbes may account for the anti-seizure effects of the ketogenic diet. JAMA, 2018, 320(13): 1307. |
75. | Braakman HMH, van Ingen J. Can epilepsy be treated by antibiotics? J Neurol, 2018, 265(8): 1934-1936. |
76. | Möhle L, Mattei D, Heimesaat M, et al. Ly6c(hi) monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep, 2016, 15(9): 1945-1956. |
77. | Sutter R, Rüegg S, and Tschudin-Sutter S, Seizures as adverse events of antibiotic drugs: A systematic review. Neurology, 2015. 85(15): 1332-1341. |
78. | Kuperman AA, Koren O. Antibiotic use during pregnancy: How bad is it? BMC Med, 2016, 14(1): 91. |
79. | Mao XY, Yin XX, Guan QW, et al. Dietary nutrition for neurological disease therapy: current status and future directions. Pharmacol Ther, 2021, 226: 107861. |
80. | Rawat K, Singh N, Kumari P, et al. A review on preventive role of ketogenic diet (kd) in cns disorders from the gut microbiota perspective. Rev Neurosci, 2021, 32(2): 143-157. |
81. | Pittman QJ. A gut feeling about the ketogenic diet in epilepsy. Epilepsy Res, 2020, 166: 106409. |
82. | Lindefeldt M, Eng A, Darban H, et al. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes, 2019, 5(1): 5. |
83. | Zhang Y, Zhou S, Zhou Y, et al. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res, 2018, 145: 163-168. |
84. | Youngson NA, Morris MJ, Ballard JWO. The mechanisms mediating the antiepileptic effects of the ketogenic diet, and potential opportunities for improvement with metabolism-altering drugs. Seizure, 2017, 52: 15-19. |
85. | Newell C, Bomhof MR, Reimer RA, et al. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol Autism, 2016, 7(1): 37. |
86. | Gong X, Cai Q, Liu X, et al. Gut flora and metabolism are altered in epilepsy and partially restored after ketogenic diets. Microb Pathog, 2021, 155: 104899. |
87. | Augustin K, Khabbush A, Williams S, et al. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol, 2018, 17(1): 84-93. |
88. | He Z, Cui B T, Zhang T, et al. Fecal microbiota transplantation cured epilepsy in a case with crohn's disease: the first report. World J Gastroenterol, 2017, 23(19): 3565-3568. |
89. | Vendrik KEW, Ooijevaar RE, De Jong PRC, et al. Fecal microbiota transplantation in neurological disorders. Front Cell Infect Microbiol, 2020, 10: 98-105. |
90. | Citraro R, Lembo F, De Caro C, et al. First evidence of altered microbiota and intestinal damage and their link to absence epilepsy in a genetic animal model, the wag/rij rat. Epilepsia, 2021, 62(2): 529-541. |
91. | Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, et al. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science, 2019, 363(10): 6427-6431. |
- 1. Sandhu KV, Sherwin E, Schellekens H, et al. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res, 2017, 179: 223-244.
- 2. Perez-Muñoz M E, Arrieta M C, Ramer-Tait A E, et al. A critical assessment of the "sterile womb" and "in utero colonization" hypotheses: Implications for research on the pioneer infant microbiome. Microbiome, 2017, 5(1): 48.
- 3. Caballero L, Silvia GM, Sita T, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gamma delta T cells. Nature medicine, 2016, 22(5): 516-523.
- 4. Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science, 2013, 342(6161): 971-976.
- 5. Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol, 2005, 3(10): 777-788.
- 6. Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 2013, 155(7): 1451-1463.
- 7. Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science, 2015, 350(6264): 1084-1089.
- 8. Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science, 2015, 350(6264): 1079-1084.
- 9. Konishi H, Fujiya M, Tanaka H, et al. Probioticderived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat Commun, 2016, 7: 1-5.
- 10. Chen Z, Guo L, Zhang Y, et al. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest, 2014, 124(8): 3391-3406.
- 11. Duan F, Curtis KL, March JC. Secretion of insulinotropic proteins by commensal bacteria: rewiring the gut to treat diabetes. Appl Environ Microbiol, 2008, 74(23): 7437-7438.
- 12. Duan FF, Liu JH, March JC. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes, 2015, 64(5): 1794-1803.
- 13. Liu C, Cheung W-H, Li J, et al. Understanding the gut microbiota and sarcopenia: A systematic review. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12(6): 1393-1407.
- 14. Arun K B, Madhavan A, Sindhu R, et al. Probiotics and gut microbiome - prospects and challenges in remediating heavy metal toxicity. J Hazard Mater, 2021, 420: 126676.
- 15. Han H, Yi B, Zhong R, et al. From gut microbiota to host appetite: Gut microbiota-derived metabolites as key regulators. Microbiome, 2021, 9(1): 162.
- 16. Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature, 2012, 488(7410): 178-184.
- 17. Chung Y C, Jin H M, Cui Y, et al. Fermented milk of Lactobacillus helveticus IDCC3801 improves cognitive functioning during cognitive fatigue tests in healthy older adults. Journal of Functional Foods, 2014, 10: 465-474.
- 18. Berer K, Gerdes LA, Cekanaviciute E, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40): 10719-10724.
- 19. Mazmanian SK, Liu CH, Tzianabos AO, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell, 2005, 122(1): 107-118.
- 20. Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature, 2011, 479(7374): 538.
- 21. Stokes JM, Davis JH, Mangat CS, et al. Discovery of a small molecule that inhibits bacterial ribosome biogenesis. Elife, 2014, 3: e03574.
- 22. Humann J, Mann B, Gao G, et al. Bacterial peptidoglycan traverses the placenta to induce fetal neuroproliferation and aberrant postnatal behavior. Cell Host & Microbe, 2016, 19(6): 901.
- 23. Hoban A, Stilling R, Desbonnet L, et al. Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry, 2016, 6(4): e774.
- 24. Geuking M, Ca Henzli J, Lawson M E, et al. Intestinal bacterial colonization induces mutualistic regulatory t cell responses. Immunity, 2011, 34(6): 794-806.
- 25. Xie G, Zhou Q, Qiu CZ, et al. Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World Journal of Gastroenterology, 2017, 23(33): 6164-6171.
- 26. Holmes M, Flaminio Z, Vardhan M, et al. Cross talk between drug‐resistant epilepsy and the gut microbiome. Epilepsia, 2020, 61(12): 2619-2628.
- 27. Round JL, Lee SM, Li J, et al. The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science, 2011, 332(6032): 974-977.
- 28. Wu J, Zhang Y, Yang H, et al. Intestinal microbiota as an alternative therapeutic target for epilepsy. Can J Infect Dis Med Microbiol, 2016, 21: 1-6.
- 29. Bravo JA, Forsythe P, Chew MV, et al. Ingestion of lactobacillus strain regulates emotional behavior and central gaba receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(38): 16050-16055.
- 30. Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol, 2021, 19(4): 241-255.
- 31. Ivanov, Ii, Atarashi K, Manel N, et al. Induction of intestinal th17 cells by segmented filamentous bacteria. Cell, 2009, 139(3): 485-498.
- 32. De Caro C, Iannone L F, Citraro R, et al. Can we 'seize' the gut microbiota to treat epilepsy? Neurosci Biobehav Rev, 2019. 107: 750-764.
- 33. Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med, 2014, 6(263): 263ra158.
- 34. Van De Wouw M, Boehme M, Lyte JM, et al. Short-chain fatty acids: Microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol, 2018, 596(20): 4923-4944.
- 35. Schroeder BO, Bckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nature Medicine, 2016, 22(10): 1079.
- 36. Belkaid Y , Hand T, Role of the microbiota in immunity and inflammation. Cell, 2014, 157(1): 121-141.
- 37. Smith K, Mccoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Seminars in Immunology, 2007, 19(2): 59-69.
- 38. Sharon G, Sampson T, Geschwind D, et al. The central nervous system and the gut microbiome. Cell, 2016, 167(4): 915-932.
- 39. Borghi E, Vignoli A. Rett syndrome and other neurodevelopmental disorders share common changes in gut microbial community: a descriptive review. International Journal of Molecular Sciences, 2019, 20(17): 4160.
- 40. Tremlett H, Fadrosh DW, Faruqi AA, et al. Gut microbiota in early pediatric multiple sclerosis: A case-control study. European Journal of Neurology, 2016, 23(8): 1308-1321.
- 41. Kang DW, Adams JB, Gregory AC, et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome, 2017, 5(1): 10.
- 42. Forsyth C, Shannon K M, Kordower J H, et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early parkinson's disease. Plos One, 2011, 6(12): e28032.
- 43. Hilton D, Stephens M, Kirk L, et al. Accumulation of α-synuclein in the bowel of patients in the pre-clinical phase of parkinson's disease. Acta Neuropathologica, 2014, 127(2): 235-241.
- 44. Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiology of Aging, 2017, 49: 60-68.
- 45. Sun J, Wang F, Ling Z, et al. Clostridium butyricum attenuates cerebral ischemia/reperfusion injury in diabetic mice via modulation of gut microbiota. Brain Research, 2016, 1642: 180-188.
- 46. Bogiatzi C, Gloor G, Allen-Vercoe E, et al. Metabolic products of the intestinal microbiome and extremes of atherosclerosis. Atherosclerosis, 2018, 273: 91-97.
- 47. Jia Y, Liao S I, He Y, et al. Dysbiosis of gut microbiota with reduced trimethylaminenoxide level in patients with large‐artery atherosclerotic stroke or transient ischemic attack. Journal of the American Heart Association, 2015, 4(11): e002699.
- 48. Nagpal J, Cryan JF. Microbiota-brain interactions: moving toward mechanisms in model organisms. Neuron, 2021, 5: 152-156.
- 49. Godfrey JBW. Misleading presentation of epilepsy in elderly people. Age & Ageing, 1989, (1): 17-20.
- 50. Brodie MJ, Elder AT, Kwan P. Epilepsy in later life. Lancet Neurology, 2009, 8(11): 1019-1030.
- 51. Martin Y, Artaz M, Bornand-Rousselot A. Nonconvulsive status epilepticus in the elderly. Journal of the American Geriatrics Society, 2014, 52(3): 162-168.
- 52. Kobow K, Auvin S, Jensen F, et al. Finding a better drug for epilepsy: Antiepileptogenesis targets. Epilepsia, 2012, 53(11): 1868-1876.
- 53. Arul A, Tan QY. Balasubramaniam V R, et al. Gut microbiota and epilepsy:a systematic review on their relationship and possible therapeutics. ACS Chemical Neuroscience, 2020, 11(21): 256-262.
- 54. Şafak B, Altunan B, Topçu B, et al. The gut microbiome in epilepsy. Microb Pathog, 2020, 139: 103853.
- 55. Guerriero RM, Giza CC, Rotenberg A. Glutamate and gaba imbalance following traumatic brain injury. Curr Neurol Neurosci Rep, 2015, 15(5): 27.
- 56. Riazi K, Galic MA, Kuzmiski JB, et al. Microglial activation and tnfalpha production mediate altered cns excitability following peripheral inflammation. Proc Natl Acad Sci USA, 2008, 105(44): 17151-17156.
- 57. Riazi K, Galic MA, Pittman QJ. Contributions of peripheral inflammation to seizure susceptibility: cytokines and brain excitability. Epilepsy Res, 2010, 89(1): 34-42.
- 58. Riazi K, Honar H, Homayoun H, et al. Intestinal inflammation alters the susceptibility to pentylenetetrazole induced seizure in mice. J Gastroenterol Hepatol, 2004, 19(3): 270-277.
- 59. Atarashi K, Tanoue T, Ando M, et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell, 2015, 163(2): 367-380.
- 60. Javdan B, Lopez JG, Chankhamjon P, et al. Personalized mapping of drug metabolism by the human gut microbiome. Cell, 2020, 181(7): 1661-1679.
- 61. Cowan CSM, Hoban AE, Ventura-Silva AP, et al. Gutsy moves: the amygdala as a critical node in microbiota to brain signaling. Bioessays, 2018, 40(1): 42-48.
- 62. Lindefeldt M, Eng A, Darban H, et al. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. Npj Biofilms & Microbiomes, 2019, 5(1): 69-74.
- 63. Bedarf J R, Hildebrand F, Coelho L P, et al. Functional implications of microbial and viral gut metagenome changes in early stage l-dopa-nave parkinson's disease patients. Genome Medicine, 2017, 9(1): 39-45.
- 64. Sun Y, Su Y, Zhu W, Microbiome-metabolome responses in the cecum and colon of pig to a high resistant starch diet. Front Microbiol, 2016, 7: 779-782.
- 65. Li Y, Li J, Xu F, et al. Gut microbiota as a potential target for developing anti-fatigue foods. Crit Rev Food Sci Nutr, 2021, 23(1): 1-16.
- 66. Bloom PP, Tapper EB, Young VB, et al. Microbiome therapeutics for hepatic encephalopathy. J Hepatol, 2021, 75(6): 1452-1464.
- 67. Dayan CM, Besser REJ, Oram RA, et al. Preventing type 1 diabetes in childhood. Science, 2021, 373(6554): 506-510.
- 68. Das G, Heredia JB, De Lourdes PM, et al. Korean traditional foods as antiviral and respiratory disease prevention and treatments: A detailed review. Trends Food Sci Technol, 2021, 116: 415-433.
- 69. Hu Y, He J, Zheng P, et al. Prebiotic inulin as a treatment of obesity related nonalcoholic fatty liver disease through gut microbiota: A critical review. Crit Rev Food Sci Nutr, 2021, 12(1): 1-11.
- 70. Kang DW, Adams JB, Coleman DM, et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci Rep, 2019, 9(1): 5821.
- 71. Adelman MW, Woodworth MH, Langelier C, et al. The gut microbiome's role in the development, maintenance, and outcomes of sepsis. Crit Care, 2020, 24(1): 278-286.
- 72. Tankou SK, Regev K, Healy BC, et al. A probiotic modulates the microbiome and immunity in multiple sclerosis. Ann Neurol, 2018, 83(6): 1147-1161.
- 73. Bagheri S, Heydari A, Alinaghipour A, et al. Effect of probiotic supplementation on seizure activity and cognitive performance in ptz-induced chemical kindling. Epilepsy Behav, 2019, 95: 43-50.
- 74. Hampton T, Gut microbes may account for the anti-seizure effects of the ketogenic diet. JAMA, 2018, 320(13): 1307.
- 75. Braakman HMH, van Ingen J. Can epilepsy be treated by antibiotics? J Neurol, 2018, 265(8): 1934-1936.
- 76. Möhle L, Mattei D, Heimesaat M, et al. Ly6c(hi) monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep, 2016, 15(9): 1945-1956.
- 77. Sutter R, Rüegg S, and Tschudin-Sutter S, Seizures as adverse events of antibiotic drugs: A systematic review. Neurology, 2015. 85(15): 1332-1341.
- 78. Kuperman AA, Koren O. Antibiotic use during pregnancy: How bad is it? BMC Med, 2016, 14(1): 91.
- 79. Mao XY, Yin XX, Guan QW, et al. Dietary nutrition for neurological disease therapy: current status and future directions. Pharmacol Ther, 2021, 226: 107861.
- 80. Rawat K, Singh N, Kumari P, et al. A review on preventive role of ketogenic diet (kd) in cns disorders from the gut microbiota perspective. Rev Neurosci, 2021, 32(2): 143-157.
- 81. Pittman QJ. A gut feeling about the ketogenic diet in epilepsy. Epilepsy Res, 2020, 166: 106409.
- 82. Lindefeldt M, Eng A, Darban H, et al. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes, 2019, 5(1): 5.
- 83. Zhang Y, Zhou S, Zhou Y, et al. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res, 2018, 145: 163-168.
- 84. Youngson NA, Morris MJ, Ballard JWO. The mechanisms mediating the antiepileptic effects of the ketogenic diet, and potential opportunities for improvement with metabolism-altering drugs. Seizure, 2017, 52: 15-19.
- 85. Newell C, Bomhof MR, Reimer RA, et al. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol Autism, 2016, 7(1): 37.
- 86. Gong X, Cai Q, Liu X, et al. Gut flora and metabolism are altered in epilepsy and partially restored after ketogenic diets. Microb Pathog, 2021, 155: 104899.
- 87. Augustin K, Khabbush A, Williams S, et al. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol, 2018, 17(1): 84-93.
- 88. He Z, Cui B T, Zhang T, et al. Fecal microbiota transplantation cured epilepsy in a case with crohn's disease: the first report. World J Gastroenterol, 2017, 23(19): 3565-3568.
- 89. Vendrik KEW, Ooijevaar RE, De Jong PRC, et al. Fecal microbiota transplantation in neurological disorders. Front Cell Infect Microbiol, 2020, 10: 98-105.
- 90. Citraro R, Lembo F, De Caro C, et al. First evidence of altered microbiota and intestinal damage and their link to absence epilepsy in a genetic animal model, the wag/rij rat. Epilepsia, 2021, 62(2): 529-541.
- 91. Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, et al. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science, 2019, 363(10): 6427-6431.
-
Previous Article
磁共振波谱分析在癫痫诊治中的研究进展 -
Next Article
探讨在癫痫专业研究生培养中开展思想政治教育的方法