OBJECTIVE: To study the effect of platelet-rich plasma in the repair of bone defect. METHODS: Segmental bone defects of 1 cm were created in the mid-upper part of bilateral radius of 24 New Zealand white rabbits. One side was randomly chosen as the experimental side, which was filled with artificial bone with platelet-rich plasma (PRP). The other side filled with artificial bone without PRP as the control. After 2, 4, 8 and 12 weeks of implantation, the gross, radiological, histological observations, and computer graphic analysis were performed to investigate the bone healing of the defect in both sides. RESULTS: Two weeks after operation, new bone and fibrous tissue formation in both the experimental and the control sides were observed only in the areas adjacent to the cut ends of the host bone, but the amount of new tissue in the experimental side was much more than that in the control side. In the 4th and 8th weeks, the surface of the artificial bone was covered with a large amount of new bones, the artificial bone was bridged tightly with the host bone by callus in the experimental side, while new bone was limited mainly in the cut ends and was less mature in the control side. In the 12th weeks, bone defects were entirely healed in the experimental side, which were covered completely with cortical bone, while new bone formation was only observed in the ends of artificial bone and there were not continuous bone callus on the surface in the control side. CONCLUSION: Artificial bone with PRP is effective in the repair of segmental bone defects, and PRP could improve the healing of bone defect.
Abstract To investigate the ectopic new bone formation following implantation of bovine hydroxyapatite Bio-oss together with free periosteum, 12 chabb: ch rabbits were selected. In 10 rabbits, Bio-oss block together with free periosteum was implanted in the gastrocnemius muscle of one leg randomly, and Bio-oss block alone was implanted in the same muscle of the other leg. In the other 2 rabbits, the periosteum was implanted into the gastrocnemius musle of both legs. Histologic examination and quantitative analysis of newbone formation were performed at 3 and 6 weeks postoperatively. The results showed that in the legs implanted bovine hydroxyapatite Bio-oss together with freeperiosteum, new bone formation began at 5th day after implantation. The area ofnew bone composed of 19.0% of the specimens at 3 weeks postoperatively. No boneformation through out the experimental period in Bio-oss block alone implantedlegs and also periosteum implanted legs. We concluded that bovine hydroxyapatite Bio-oss has a good capacity of osteoconduction. New bone can be formed after the implantation of hydroxyapatite combined with free periosteum.
Objective To study the effect and complication of repairing depressed fracture of frontal part with hydroxylapatite particulate artificial bone. Methods From January 1994 to December 2002, 13 patients were all diagnosed as having depressed fracture of frontal part with clinical and X-ray examinations. Thesmall incision before the hair-edge or local small incision was made. After opening the incision, we performed creeping decollement. Then the hydroxylapatite particulate artificial bone was implanted into the sites of the depressed fracture. The effect and complication were observed with clinical and X-rayexaminations in all patients 1 week, 1 month, 3 months after operation.Results The quantity of hydroxylapatite implanted was 10-30g. Primary healing was obtained in all cases without any complication. All cases were followed up for 3 months. The contours of the frontal part were restored well. Conclusion It is a good method to repair depressed fracture of frontal part with hydroxylapatite particulate artificial bone.
Objective To study the mechanism of ectopic osteogenesis of nacre/Polylactic acid (N/P) artificial bone combined with allogenic osteoblasts, and to explore the possibility as a scaffold material of bone tissue engineering. Methods The allogenic- osteoblasts seeded onto N/P artificial bone were co-cultured in vivo 1 week.The N/P artificial bone with allogenic osteoblasts were implanted subcutaneously into the left back sites of the New Zealand white rabbits in the experimental group and the simple N/P artificial bone into the right ones in the control group. The complexes were harvested and examined by gross observation, histologic analysis and immunohistochemical investigation 2, 4 and 8 weeks after implantation respectively.Results In experimental group, the osteoid formed after 4 weeks, and the mature bone tissue withbone medullary cavities formed after 8 weeks; but in control group there was nonew bone formation instead of abundant fibrous tissue after 4 weeks, and more fibrous tissue after 8 weeks.Conclusion N/P artificial bone can be used as an optical scaffold material of bone tissue engineering.
The primary results of five patients in whomthe block hydroxyapatite artificial bone (BHAB)used in maxillofacial plastic repair were reported. All incisions healed up with no evidence ofinfection. None of the implants was rejected norhad resorption changes. Satisfactory estheticaleffects were maintained. The results demonst-rated BHAB had a good biocampatibility andcould be used as a bone graft substitute inmaxillofacial plastic repair. This kind of material could be carved and contoured ...
Artificial bone replacement has made an important contribution to safeguard human health and improve the quality of life. The application requirements of rapid prototyping technology based on reverse engineering in individualized artificial bone with individual differences are particularly urgent. This paper reviewed the current research and applications of rapid prototyping and reverse engineering in artificial bone. The research developments and the outlook of bone kinematics and dynamics simulation are also introduced.
Objective To investigate aesthetic outcomes and postoperative complications of hydroxyapatite particulate artificial bone for repairing sunken deformation of frontal bone following removal of dermoid cyst. Methods From February 2000 to May 2005, hydroxyapatite particulate artificial bone was used to repair the sunken deformation of frontal bone in 13 cases (9 males and 4 females), and the age of the patients was from 17 to 41 years. The dermoid cysts were all found during infant period, and the length and width of the cysts ranged from 6 cm×4 cm to 10 cm×8 cm. Anincision along the hairedge or tumor margin was made to excise the dermoid cyst in the forehead. After complete removal of dermoid cyst, the sunken frontal bone was examined and repaired with hydroxyapatite particulate artificial bone. The clinical checkup and Xray examination were utilized to determine aesthetic outcomes and postoperative complications at 1 week, 1 month and 6 months after operation. Results The primary wound healing was obtained in allpatients postoperatively, and no complications such as hematoma, infection, recurrence of dermoidcysts or displacement of hydroxyapatite particulate artificial bone were observed. With a followup from 1 to 20 months, all sunken deformations were completely repaired with satisfactorily aesthetic outcomes. Through clinical checkup and X-ray examination, the implants were found to integrate with the frontal bones without any gaps and displacement. Conclusion It is a simple and viable method torepair sunken deformation of frontal bone with hydroxyapatite particulate artificial bone.
Objective To study in vitro sustained release behaviour of the recombinant human bone morphogenetic protein 2(rhBMP-2) from the sample which porous calcium phosphate cement (PCPC) was combined with rhBMP-2, and to evaluate the effect of PCPC/rhBMP-2 composite on repairing bone defect in the animalstudy.Methods rhBMP-2 was absorbed into PCPC by vacuum-adsorption and freeze-dried at -40℃, the PCPC/rhBMP-2 enwrapped with chitosan as the experimental group, the pure PCPC/rhBMP-2 as the control group, then the sustained release ofrhBMP-2 from PCPC was determined in simulated body fluid (SBF) by UV-VIS spectrophotometer. At same time, the PCPC/rhBMP-2 composites with chitosan were implanted into the (4.2 mm×5.0 mm femora defects of rabbits, which were considered as the experimental group, whereas in the control group only PCPC was implanted. The effect of repairingbone defect was evaluated in the 4th and 8th week postoperatively by radiograph and histomorphology.Results The PCPC have a high absorption efficiency to rhBMP-2, and the release of rhBMP-2 was sustained release system. The release of rhBMP-2 from PCPC in the experimental group (99% after 350 hours) was slowerthan that in the control group (100% after 150 hours). In the experimental group, the radiological and histomorphological evaluations showed that theinterfaces between the materials and host bones became blurred both at 4th and 8th week. The implanted materials were partially absorbed, and the implanted areas exhibited the formation of new bone. In the control group, a little amount of new bones was observed. Conclusion The PCPC shows great clinical potential as a carrier for rhBMP-2. The PCPC/rhBMP-2 composite possesses much potentialities of osteoinductivity and the ability of repairing bone defect, so it can be used as a novel bone substitute clinically.