Mild cognitive impairment (MCI) is a clinical transition state between age-related cognitive decline and dementia. Researchers can use neuroimaging and neurophysiological techniques to obtain structural and functional information about the human brain. Using this information researchers can construct the brain network based on complex network theory. The literature on graph theory shows that the large-scale brain network of MCI patient exhibits small-world property, which ranges intermediately between Alzheimer's disease and that in the normal control group. But brain connectivity of MCI patients presents topologically structural disorder. The disorder is significantly correlated to the cognitive functions. This article reviews the recent findings on brain connectivity of MCI patients from the perspective of multimodal data. Specifically, the article focuses on the graph theory evidences of the whole brain structural and functional and the joint covariance network disorders. At last, the article shows the limitations and future research directions in this field.
The aim of this study is to explore the effects of continuous theta-burst transcranial magnetic stimulation (cTBS) on functional brain network in emotion processing. Before and after the intervention of cTBS over left dorsolateral prefrontal cortex (DLPFC) of ten participants who were asked to perform the emotion gender recognition task, we recorded their scalp electroencephalograms (EEG). Then we used the phase synchronization of EEG to measure the connectivity between two nodes. We then calculated the network efficiency to describe the efficiency of information transmission in brain regions. Our research showed that after the intervention of cTBS and the stimulation of the emotion face picture, there was an obvious enhancement in the event-related spectral perturbation after stimuli onset in beta band in 100–300 ms. Under the stimulation of different emotion picture, the values of global phase synchronization for negative and neutral stimuli were enhanced compared to positive ones. And the increased small-worldness was found in emotional processing. In summary, based on the effect of activity change in the left DLPFC on emotion processing brain network, the emotional processing mechanism of brain networks were preliminary explored and it provided the reference for the research of emotion processing brain network in the future.
This study is aimed to investigate objective indicators of mental fatigue evaluation to improve the accuracy of mental fatigue evaluation. Mental fatigue was induced by a sustained cognitive task. The brain functional networks in two states (normal state and mental fatigue state) were constructed based on electroencephalogram (EEG) data. This study used complex network theory to calculate and analyze nodal characteristics parameters (degree, betweenness centrality, clustering coefficient and average path length of node), and served them as the classification features of support vector machine (SVM). Parameters of the SVM model were optimized by gird search based on 6-fold cross validation. Then, the subjects were classified. The results show that characteristic parameters of node of brain function networks can be divided into normal state and mental fatigue state, which can be used in the objective evaluation of mental fatigue state.
Although attention plays an important role in cognitive and perception, there is no simple way to measure one's attention abilities. We identified that the strength of brain functional network in sustained attention task can be used as the physiological indicator to predict behavioral performance. Behavioral and electroencephalogram (EEG) data from 14 subjects during three force control tasks were collected in this paper. The reciprocal of the product of force tolerance and variance were used to calculate the score of behavioral performance. EEG data were used to construct brain network connectivity by wavelet coherence method and then correlation analysis between each edge in connectivity matrices and behavioral score was performed. The linear regression model combined those with significantly correlated network connections into physiological indicator to predict participant's performance on three force control tasks, all of which had correlation coefficients greater than 0.7. These results indicate that brain functional network strength can provide a widely applicable biomarker for sustained attention tasks.
The measurement of network is one of the important researches in resolving neuronal population information processing mechanism using complex network theory. For the quantitative measurement problem of functional neural network, the relation between the measure indexes, i.e. the clustering coefficient, the global efficiency, the characteristic path length and the transitivity, and the network topology was analyzed. Then, the spike-based functional neural network was established and the simulation results showed that the measured network could represent the original neural connections among neurons. On the basis of the former work, the coding of functional neural network in nidopallium caudolaterale (NCL) about pigeon's motion behaviors was studied. We found that the NCL functional neural network effectively encoded the motion behaviors of the pigeon, and there were significant differences in four indexes among the left-turning, the forward and the right-turning. Overall, the establishment method of spike-based functional neural network is available and it is an effective tool to parse the brain information processing mechanism.
Exoskeleton nursing robot is a typical human-machine co-drive system. To full play the subjective control and action orientation of human, it is necessary to comprehensively analyze exoskeleton wearer’s surface electromyography (EMG) in the process of moving patients, especially identifying the spatial distribution and internal relationship of the EMG information. Aiming at the location of electrodes and internal relation between EMG channels, the complex muscle system at the upper limb was abstracted as a muscle functional network. Firstly, the correlation characteristics were analyzed among EMG channels of the upper limb using the mutual information method, so that the muscle function network was established. Secondly, by calculating the characteristic index of network node, the features of muscle function network were analyzed for different movements. Finally, the node contraction method was applied to determine the key muscle group that reflected the intention of wearer’s movement, and the characteristics of muscle function network were analyzed in each stage of moving patients. Experimental results showed that the location of the myoelectric collection could be determined quickly and efficiently, and also various stages of the moving process could effectively be distinguished using the muscle functional network with the key muscle groups. This study provides new ideas and methods to decode the relationship between neural controls of upper limb and physical motion.
Cognitive impairment is one of the three primary symptoms of schizophrenic patients and shows important value in early detection and warning for high-risk individuals. To study the specifics of electroencephalogram (EEG) in patients with schizophrenia under the cognitive load, we collected EEG signals from 17 schizophrenic patients and 19 healthy controls, extracted signals of each band based on wavelet transform, calculated the characteristics of nonlinear dynamic and functional brain networks, and automatically classified the two groups of people by using a machine learning algorithm. Experimental results indicated that the correlation dimension and sample entropy showed significant differences in α, β, θ, and γ rhythm of the Fp1 and Fp2 electrodes between groups under the cognitive load. These results implied that the functional disruptions in the frontal lobe might be the important factors of cognitive impairments in schizophrenic patients. Further results of the automatic classification analysis indicated that the combination of nonlinear dynamics and functional brain network properties as the input characteristics of the classifier showed the best performance, with the accuracy of 76.77%, sensitivity of 72.09%, and specificity of 80.36%. The results of this study demonstrated that the combination of nonlinear dynamics and function brain network properties may be potential biomarkers for early screening and auxiliary diagnosis of schizophrenia.
How to extract high discriminative features that help classification from complex resting-state fMRI (rs-fMRI) data is the key to improving the accuracy of brain disease recognition such as schizophrenia. In this work, we use a weighted sparse model for brain network construction, and utilize the Kendall correlation coefficient (KCC) to extract the discriminative connectivity features for schizophrenia classification, which is conducted with the linear support vector machine. Experimental results based on the rs-fMRI of 57 schizophrenia patients and 64 healthy controls show that our proposed method is more effective (i.e., achieving a significantly higher classification accuracy, 81.82%) than other competing methods. Specifically, compared with the traditional network construction methods (Pearson’s correlation and sparse representation) and the commonly used feature selection methods (two-sample t-test and Least absolute shrinkage and selection operator (Lasso)), the algorithm proposed in this paper can more effectively extract the discriminative connectivity features between the schizophrenia patients and the healthy controls, and further improve the classification accuracy. At the same time, the discriminative connectivity features extracted in the work could be used as the potential clinical biomarkers to assist the identification of schizophrenia.
The construction of brain functional network based on resting-state functional magnetic resonance imaging (fMRI) is an effective method to reveal the mechanism of human brain operation, but the common brain functional network generally contains a lot of noise, which leads to wrong analysis results. In this paper, the least absolute shrinkage and selection operator (LASSO) model in compressed sensing is used to reconstruct the brain functional network. This model uses the sparsity of L1-norm penalty term to avoid over fitting problem. Then, it is solved by the fast iterative shrinkage-thresholding algorithm (FISTA), which updates the variables through a shrinkage threshold operation in each iteration to converge to the global optimal solution. The experimental results show that compared with other methods, this method can improve the accuracy of noise reduction and reconstruction of brain functional network to more than 98%, effectively suppress the noise, and help to better explore the function of human brain in noisy environment.