west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "李秀群" 28 results
  • CHANGES IN PERIPHERAL BLOOD T LYMPHOCYTE SUBSETS OF RABBITS IN EARLY STAGE AFTER TRANSPLANTATION OF TISSUE ENGINEERED BONE CONSTITUTED BY BIOLOGICALLY-DERIVED SCAFFOLD

    Objective To observe the changes in the peripheral blood T lymphocyte subsets and the histomorphology of the transplanted tissues in the rabbits in the early stage after transplantation of the tissue engineered boneconstituted by the biologically-derived scaffold and to confirm the feasibility of the biologicallyderived materials as a scaffold in the bone tissue engineering. Methods Forty-eight healthy New Zealand rabbits (weight, 2.0-2.5 kg) with a 1-cm defect were equally and randomly divided into 4 groups: Groups A-D. The partial demineralized freeze-dried bone (PDFDB), the tissue engineered bone constructed by the osteoblasts derived from the lactant rabbit periosteum as a seeding cell, the xenogeneic cancellous bone undergoing the antigen self-digestion, partial demineralization and freeze-driedprocess as a scaffold, and the fresh xenogeneic allografting bone were respectively transplanted into the segmental defects of the rabbit radii in Groups A-D.To examine the effects of the 4 different materials, the flow cytometry was used to observe the changes in the T lymphocyte subsets in the rabbit peripheral blood at 1, 2, and 4 weeks after the operations and to examine the osteogenesis achieved by the 4 materials, the histological observations were also performed at 2, 4, 8, and 12 weeks after the operations. Results Two weeks after the tissue engineered bone transplantation in Group B, the osteoblasts and chondroblasts were found in the apertures of the scaffold, the new bone formation could be observed, the osteoclasts could be seen in the peripheral zone, and some of the netlike frameworks were destroyed and absorbed. Four weeks after the operation, the histological observation revealed that the osteocartilagionous callus turned into a woven bone. The peripheral blood T lymphocyte subsets of CD4+ and CD8+ were significantly greater in number 1-2 weeks after the operations and in Groups A and B than before the operations and in the other groups (.Plt;0.05);4 weeks after the operations the T lymphocyte subset of CD4+ was only slightly greater in number than before the operations, but with no statistically significant difference (Pgt;0.05). In Group C, the increase of the T lymphocyte subsets of CD4+ and CD8+ was not significant after the operation (Pgt;0.05). The T lymphocyte subsets of CD4+ and CD8+ were significantly greater in number 1, 2 and 4 weeks after the operations and in Group D than before the operation and in the other groups (Plt;0.05). Conclusion The tissue engineered bone constructed by the partial demineralized freezedried bone as a scaffold does not cause a serious immunologic rejection in the early stage after the transplantation and does not affect its good ability to repair the bone defect. The biologicallyderived bone canbe used as a scaffold in the bone tissue engineering.

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY OF BONE INFECTION ON WO-1 CONTROLLED-RELEASE SYSTEM

    Objective To develop a new tissue engineering bone material which has an antiinfective function. Methods Collagen loaded bio-derived bone material was made by using type I collagen and allograft bone. WO-1was absorbed to collagen loaded bio-derived bone, then the morphological feature of the new bone material was observed by scanning electronic microscopy.3 H tetracycline was diluted by WO-1 solution, and was absorbed to collagen loaded bio-derived bone,then the releasing kinetics of WO-1 was detected by 3 Htetracycline in vitro. WO-1 bioderived bone material was grafted into a culturemedium with staphylococcus aureus, escherichia coli, and pseudomonas aeruginosato observe its bacteriostasis ability. WO-1 bio-derived bone material was grafted into radius of defected rabbits, the concentration of WO-1 was detected onthe 9th, 16th, 23th, and 30th day byHLPC in blood, in bone and in muscle. The bacteriostasis ability of WO-1 loaded bio-derived bone was tested in vitro and in vivo. Results WO-1 loaded bioderived bone maintained natural network pore system and the surface of network pore system was coated with collagen membrane. The release of WO-1 from WO-1 loaded bioderived bone showed bursting release on the 1st day, then showed stable release. WO-1 loaded bioderived bone showed lasting and stable bacteriostasis to common pathogens of orthopaedic infections. The high concentration of WO-1 was observed in bone tissue and in muscle tissue at differenttime points and the difference among groups had no significance(P>0.05), while the concentration of WO-1 in blood was very low(P<0.05). Conclusion WO-1 loaded bioderived bone has good capability of drug controlled-release and bacteriostasis. 

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • EXPERIMENTAL STUDIES ON PREPARATION AND PROPERTY OF SCAFFOLD MATERIAL OF BIO-DERIVED BONE LOADING WO-1

    Objective To provide the chosen scaffold materials for experiment and application of tissue engineering and to detect the properties of the collagenbio-derived bone scaffold material loading WO-1. Methods The purebio-derived bone scaffold material, bio-derived bone scaffold material loading collagen, collagen bio-derived bone scaffold material loading WO-1 were made by use of allograftbone, and typeI collagen, and WO-1. The morphological features, constitute components and mechanical properties were examined by scanning electron microscopy,X- rays diffraction and mechanical assay. Results The bio-derived bone scaffold material maintained natural network pore system; the bio-derived bone scaffold material loading collagen maintained natural network pore system, the surface of network pore system was coated by collagen membrane; the collagen bio-derived bone scaffold material loading WO-1 maintained natural network pore system, thesurface of network pore system was coated by collagen membrane. The pore sizes of the 3materials were 90-700 μm, 75-600 μm and 80-600 μm, respectively, and the porosities were 87.96%, 80.47%, 84.2%. There was no significant difference between them(P>0.05).The collagen bio-derived bone scaffold material loading WO-1 consisted of [HA,Ca10(OH)2(PO4)6]. There was no significant difference in the mechanical strength of the three scaffold materials. Conclusion The bio-derived bone scaffold material loading WO-1 is as good as bio-derived bone scaffold material and collagen bio-derived bone scaffold material, and it is an effective scaffold material for tissue engineering bone.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY OF TISSUE ENGINEERED BONE WITH CRYOPRESERVATON ON HEALING OF BONE DEFECTS

    Objective To investigate the effect of tissue engineered bone with cryopreservation on healing of bone defects and to explore feasibility of cryopreservation for tissue engineered bone. Methods Tissue engineeredbones were constructed with osteoblasts being seeded onto bio-derived materials made from freshhuman bones,and they were preserved at 4℃ and -196℃ for 3 months and 6 monthsrespectively.They were applied to repair segmental bone defects of rabbit’s radius while the tissue engineered bone without cryopreservation and bio-derived materials were brought into control groups.The experiment was divided into groups A3,A6,B3,B6,C and D(group A3:tissue engineered bones were preserved at 4℃ for 3 months; group A6:tissue engineered bones were preserved at 4℃ for 6 months;group B3:tissue engineered bones were preserved at -196℃ for 3 months; group B6:tissue engineered bones were preserved at -196℃ for 6 months; group C: tissueengineered bones without cryopreservation; group D: bio-derived materials). Macroscopical and histologial examination were done at the 2nd,4th,6th,12th weeks, X-ray examination was done at the 6th,12th weeks and biomechanics were determined at 12th weeks after operation respectively. Results Macroscopical observation showed no significant differences among group A3, A6, B3, B6 and C, but less new bone formation and more obvious boundary in group D were observed. Histological observation showed more collagen and new bone around the edge of implant of group A3, A6, B3, B6 and C than group D, and histological evaluation showed significant differences between group D and other groups(P<0.05). Radiographic observation showed no absorbability of the implant cortex and less new bone formation in group D, but the unity between implant and host bone, medullary cavity reopened, disappearance of fracture line and fine bone modelling were observed in other groups at 12 weeks after operation. Biomechanics between group D and other groups showed significant differences(P<0.05). Conclusion Cryopreservation (4℃ and -196℃) were capable of preserving tissue engineered bone for long time, and tissue engineered bone withcryopreservation has significant effect on healing of bone defects. The methods f it clinical application.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • THE STUDY OF INTERACTION BETWEEN THE OSTEOBLAST AND BIO-DERIVED MATERIAL BY DETECTING THE GENE EXPRESSION

    Objective To study the gene expressions of human osteoblasts during the construction of tissue engineered bone with the bioderived material. Methods The fetal osteoblasts were used to construct tissue engineered bone with the bio-derived material and then were cultured 2,4,6,8 and 10 days in vitro. Real-time PCR analysis indicated that Cbfa 1, Osterix, Collagen type Ⅰ,osteocalcin(OC) and Integrin α5 and β1 were present in osteoblasts with bio-derived materials.Results The change ofCbfa1 was consistent with the change of Osterix. On 2nd day and 8th day, the expression of Osterix in experimental group was higher than that in control group, P<0.05. Collagen type Ⅰ’s change was consistent with change of OC expression, and its expression was higher in experimental group than that in control group on 2nd, 4th, 6th and 8th day. The Integrinexpression was high all along. Conclusion The important genes can be expressed normally by integrating osteoblasts with bioderived scaffolds. As skeleton tissue engineering scaffold, the bio-derived bone is conducive to keepthe osteoblast’s phenotype and differentiation with osteoconductive ability. The osteoblast can enter proliferation stage favorably and the scaffold materials exert no effects on it. Bio-derived bone can also supply more space for cellsto proliferate. The bio-derived materials promote osteoblasts adhesion.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • PREPARATION OF HUMAN ACELLULAR AMNIOTIC MEMBRANE AND ITS CYTOCOMPATIBILITY AND BIOCOMPATIBILITY

    Objective To prepare human acellular amniotic membrane(HAAM) and to measure its cytocompatibility and biocompatibility. Methods HAAM were preparedby chemical detergent-enzymatic extraction. Fresh human amnion was crosslinkedwith glutaradehyde, shaken in 0.5% SDS for 24 hours, and then treated with 0.25%trypsin for 4 hours. The production were freeze-drying and sterilized using ethylene oxide. Human fibroblasts were isolated from embryo and expanded in vitro. The fibroblasts were seeded in HAAM. HAAM and specimen were stained with HE and Mallory, and observed grossly, under light microscopy and scanning electron microscopy. The HAAM were implanted in the back of SD rats. Results There wereno residues of cells in the HAAM (HE, Mallory staining). One side of HAAM had reticular and porous structure, the other side had compact fibrous structure.Pore size was from 10 to 80 nm. The HAAM could be seeded with expanded fibroblasts in vitro,and fibroblasts had the potential of spread and proliferation. The SD rat in the implant test had no death, convulsions and other abnormal response. Conclusion The detergent-enzymatic extraction process can remove cellsand solvable components effectively and preserve the tissue matrix well and keep the reticular structure. The HAAM can be used as an ideal scaffold of biological membrane for tissue engineering.

    Release date:2016-09-01 09:33 Export PDF Favorites Scan
  • EFFECT OF HUMAN ACELLULAR AMNION MEMBRANE ON TENDON ADHESION IN RAT

    Objective To investigate the effects of human acellularamnion membrane on SD rat tendon adhesion and to obtain the experimental data for clinical application in preventing postoperative tendon adhesion. Methods The tendons of 28 adult SD rats hindlimb were cut and sutured. The tendons of left hindlimb were encapsulated by human accellular amnion membraneas the experimental group and the ones of the other side were not encapsulatedas control group. The rats were killed 1, 2, 4, 6, 8 and 12 weeks after operation. The results were evaluated grossly and histologically. Results There were no differences in healing of injury tendon and inflammatory response between the two groups. The anatomical and histological results showed the experimental group had less adhesion than the control group(Plt;0.05). Conclusion Human acellular amnion membrane can prevent adhesion of tendonwithout affecting tendon healing and is an optimal biological material to prevent tendon adhesion.

    Release date:2016-09-01 09:33 Export PDF Favorites Scan
  • PRIMARY RESEARCH OF REPAIRING LARGE ARTICULAR CARTILAGE DEFECT BY TISSUE-ENGINEERING CARTILAGE IN RABBITS

    OBJECTIVE To investigate the feasibility of repairing the whole layer defects of tibial plateau by implanting tissue-engineering cartilage. METHODS: The chondrocytes of 2-week-old rabbits were cultured and transferred to the 3rd generation, and mixed with human placenta collagen-sponge. The whole layer defects of tibial plateau in adult rabbits were repaired by the tissue-engineering cartilage in the experimental group; the defects were left un-repaired in control group. The repair results of defects were observed after 4, 12 and 24 weeks. RESULTS: In experimental group, no obvious new cartilage formation was seen 4 weeks after operation; some new cartilage formation was found after 12 weeks. Histological observation showed that chondrocytes had irregular edge, honeycombing structure and that cartilage cavities formed around the chondrocytes. After 24 weeks, obvious new cartilage formation was found with smooth surface, and linked with the tissues around it, but the defect was not repaired completely; histological results showed that cartilage cavities formed and that cartilage matrix was stained positively for toluidine blue. In control group, the defect was not repaired. CONCLUSION: The tissue-engineering cartilage can repair the defects of the whole layer cartilage of tibial plateau in rabbits, it is feasible to repair the whole layer cartilage defects of tibial plateau by this method.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • 改良的硬组织包埋技术对乳牙破骨细胞的观察

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY OF PERIOSTEAL OSTEOBLASTS COCULTURE WITH FREEZE-DRIED DEMINERALIZED BONE MATRIX

    OBJECTIVE To investigate the feasibility of freeze-dried demineralized bone matrix (FDBM) as scaffold material in bone tissue engineering. METHODS Osteoblasts which were isolated from cranial periosteum of New Zealand rabbits were cultured as the seeding cells, then the cells were cocultured with heterogenous FDBM in vitro. The cell-material complex was observed under phase microscope, light microscope and electronic scanning microscope in order to evaluate the interaction between cells and FDBM. RESULTS Eight hours after coculture, the osteoblasts adhered to FDBM scaffolds. Seven days later, the osteoblasts differentiated and proliferated in FDBM network. Extracellular matrix was secreted and calcium nodes were formed among osteoblasts. CONCLUSION FDBM is a good scaffold material for the bone tissue engineering.

    Release date: Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content