Schwanns cells were obtained from the distal end of the sciatic nerve following Wallerian degeneration of SD rats. These cells were cultured with the anteriorhorn neuron of spinal cord of 14dayold SD rat fetus. The two kinds of cells were separated by a slice. Through the microscope, the dendrites and the morphology changes at the 24th, 48th, 72th, and 96 th hour after culture were observed. It was demonstrated that the Schwanns cells played the role of maintaining the survival of neuron and promoting the growth of dendrites. It was said that the Schwanns cells could secrete neurotrophic factor which made the body enlarged and caused the dendrites enlonged to several times of the body.
Purpose To investigate the characteristics of intraocular growth of mice embryonic stem cells (ESC) in nude mice. Methods The undifferentiated murine ESC in vitro were transplanted into the eyes of nude mice.Mophological and immunohistochemical examinations were implemented. Results Two to three days after transplantation,yellowish-white granules and masses were seen inside the anterior chamber and vitreous cavity and enlarged gradually.Morphological examination showed that there were undifferentiated cells and differentiated cells in anterior chamber and vitreous cavity.The morphology and alignment of some differentiated cells were similar to those of the retina of nude mice.The cells were highly positive in NSE staining. Conclusion The transplanted ESC could grow in the eyes of nude mice and differentiate into neurons and retina-like structure. (Chin J Ocul Fundus Dis,2000,16:213-284)
OBJECTIVE: To investigate the protective effect of tumor necrosis factor-alpha(TNF-alpha) on spinal motor neurons after peripheral nerve injury. METHODS: Twenty Wistar rats were divided into two groups, the right sciatic nerves of 20 Wistar rats were transected, the proximal stumps were inserted into a single blind silicone tube. 16 microliters of normal saline(NS) and TNF-alpha(30 U/ml) were injected into the silicone tubes. After 2 weeks, the 4th, 5th lumbar spinal cord were taken for examination. Enzyme histochemical technique and image analysis were used to show acetylcholinesterase(AChE) and nitric oxide synthase(NOS) activity of spinal motor neurons. RESULTS: The number of AChE and NOS staining neurons were 8.65 +/- 1.98 and 5.92 +/- 1.36 in the experimental group and 6.37 +/- 1.42 and 8.67 +/- 1.45 in the control group respectively, there were significant difference between the two groups(P lt; 0.01). CONCLUSION: It suggests that TNF-alpha has protective effect on motor neurons after peripheral nerve injury.
In order to investigate the effect of nerve compression on neurons, the commonly used model of chronic nerve compression was produced in 48 SD rats. The rats were sacrificed in 1, 2, 3, 4, 5 and 6 months after compression, respectively. The number of neuron and ultrashruchure of alpha-motor neurons and ganglion cells of the corresponding spinal segment were examined. The results showed as following: After the sciatic nerve were crushed, the number of neuron and ultrastructure of alpha-motor neurons and ganglion cells might undergo ultrastructural changes, and even the death might occur. These changes might be aggravated as the time of crushing was prolonged and the compression force was increased. It was concluded that for nerve compression, decompression should be done as early as possible in order to avoid or minimize the ultructural changes of the neuron.
Retinal neuronal cells are crucial in the formation of vision. Injury or death of these cells may lead to irreversible damage to visual function due to their low regenerative capacity. The P2X7 receptor is a trimeric adenosine triphosphate (ATP)-gated cation channel. Recent studies have shown that P2X7 receptor plays a role in retinal neuronal death. In a series of animal models, when exposed to conditions of hypoxia or ischemia, elevated ocular pressure, trauma and exogenous agonists, P2X7 receptor activated by extracellular ATP can cause death of retinal neuronal cells such as retinal ganglion cells and photoreceptor cells through direct or indirect pathways. Blocking the expression and function of P2X7 receptor by its specific antagonist and gene knocking-out, the loss of retinal neuronal cells is significantly attenuated. P2X7 receptor may become a potential novel neuroprotective target for diseases related to the loss of retinal neurons.
Objective To observe the ultrastructural characteristics of human retinal progenitor cells cultured in vitro. Methods Six 5-month-old human fetuses(12 eyes)without eye diseases were selected. Retinal progenitor cells from the retina of one eye of each fetus were cultured in vitro,and observed by transmission electronic microscopy(TEM); while those from the other eye were directly observed by TEM. Results Abundant heterochromatin were found in the karyon of 5-month embryonic retinal neuroepithelial cells,and the figure of the karyons was irregular.A few scattered initial cells were seen in retinal neuroepithelial layer with large karyon,smooth surface,abundant euchromatin,and distinct nucleolus.The human retinal progenitor cells cultured in vitro had the same ultrastructural characteristics as the initial cells:with huge karyon which almost occupied the whole cell,little cytoplasm,distint nucleolus,abundant euchromatin,and little heterochromatin.The cells clung to each other in the neural globoid cell mass.The size of the outer cells was large,and karyokinesis could be found. Conclusion The cultured human retinal progenitor cells are provided with the same ultrastructure characteristics as the initial cells. (Chin J Ocul Fundus Dis, 2006, 22: 185-187)
OBJECTIVE To study the protective effects of Schwann cell derived neurotrophic factor (SDNF) on motoneurons of spinal anterior horn from spinal root avulsion induced cell death. METHODS Twenty SD rats were made the animal model of C6.7 spinal root avulsion induced motoneuron degeneration, and SDNF was applied at the lesion site of spinal cord once a week. After three weeks, the C6.7 spinal region was dissected out for motoneuron count, morphological analysis and nitric oxide synthase (NOS) enzyme histochemistry. RESULTS 68.6% motoneurons of spinal anterior horn death were occurred after 3 weeks following surgery, the size of survivors was significantly atrophy and NOS positive neurons increased. However, in animals which received SDNF treatment, the death of motoneurons was significantly decreased, the atrophy of surviving motoneurons was prevented, and expression of NOS was inhibited. CONCLUSION SDNF can prevent the death of motoneurons following spinal root avulsion. Nitric oxide may play a role in these injury induced motoneuron death.
ObjectiveTo study the clinical features of children with seizures as core symptoms of neuronal surface antibody syndromes. MethodsThe clinical data of neuronal surface antibody syndromes between December 2015 and December 2016 were obtained and analyzed. All children presented to hospital with seizures as core symptoms. ResultsThere were 1 male and 9 females in this study. The ages ranged from 3 years to 13 years. The disease course was between 3 and 14 days. All children presented to hospital with seizures as core symptoms.Two children had tonic seizures. one had tonic-clonic seizure. Seven had partial seizures. Among them, six children had status epilepticus and cluster attack. The other symptoms in the course of the disease were psychiatric symptoms and extrapyramidal symptoms.The anti-NMDAR antibody were found in 9 patients' CSF and blood. The LGI1 antibody was found in one patients' CSF and blood.The EEG test of 7 patients showed slow wave and sharp slow wave. Two showed spike wave. One showed slow wave.The MRI test of one patient showed abnormal. Ten cases were treated with IVIG and methylprednisolone during acute stage. The patients had been followed up for 3 to 6 months. Eight of them recovered completely. Two cases had seizures. Two cases diagnosed with anti-NMDAR related epilepsy received sound effects after treated with cyclophosphamide. ConclusionsConvulsion may be the first common symptom of neuronal surface antibody syndromes in children. Immune factors should be screened when children with acute seizures and status epilepticus. Accompanying psychiatric symptoms, autoimmune epilepsy should be considered. The most common neuronal surface antibody in children with neuronal surface antibody syndromes is NMDAR antibody. EEG usually shows slow wave and sharp slow wave during seizures. Brain MRI is usually normal. Immunotherapy is effective in the majority of patients as the first line treatment. When the first-line treatment failed, second-line immunotherapy such as cyclophosphamide shock therapy on a regular basis is helpful.
How to realize the control of limb movement and apply it to intelligent robot systems at the level of cerebellar cortical neurons is a hot topic in the fields of artificial intelligence and rehabilitation medicine. At present, the cerebellar model usually used is only for the purpose of controlling the effect, borrowing from the functional mode of the cerebellum, but it ignores the structural characteristics of the cerebellum. In fact, in addition to being used for controlling purposes, the cerebellar model should also have the interpretability of the control process and be able to analyze the consequences of cerebellar lesions. Therefore, it is necessary to establish a bionic cerebellar model which could better express the characteristics of the cerebellum. In this paper, the process that the cerebellum processes external input information and then generates control instructions at the neuron level was explored. By functionally segmenting the cerebellum into homogeneous structures, a novel bionic cerebellar motion control model incorporating all major cell types and connections was established. Simulation experiments and force feedback device control experiments show that the bionic cerebellar motion control model can achieve better control effect than the currently widely used cerebellar model articulation controller, which verifies the effectiveness of the bionic cerebellar motion control model. It has laid the foundation for real brain-like artificial intelligence control.
Objective To explore the method that can inducethe mesenchymal stem cells (MSCs) to differentiate into the neuronlike cells in vitro.Methods The neuron-like cells were isolated froman SD rat (age, 3 months; weight, 200 g). They underwent a primary culture; theinduced liquid supernatant was collected, and was identified by the cell immunohistochemistry. The C3H1OT1/2 cells were cultured, as an MSCs model, and they were induced into differentiation by β-mercaptoethanol (Group A) and by the liquid supernatant of the neuron-like primary cells (Group B), respectively. The cells were cultured without any induction were used as a control (Group C). Immunohistochemistrywas used to identify the type of the cells. Results The result of the immunochemistry showed that the cells undergoing the primary culture expressed the neurofilament protein (NF) and the neuronspecific enolase (NSE), and they were neuron-like cells. β-mercaptoethanol could induce the C3H1OT1/2 cells toexpress NF and NSE at 2 h, and the expression intensity increased at 5 h. The liquid supernatant of the primarily-cultured neuron-like cells could induce theC3H1OT1/2 cells to express NF and NSE at 1 d, but the expression intensity induced by the liquid supernatant was weaker than that induced by β-mercaptoethanol. The positivity rate and the intensity expression of NSE were higher than those of NF. Conclusion MSCs can differentiate into the neuron-like cells by β-mercaptoethanol and the microenvironment humoral factor, which can pave the way for a further study of the differentiation of MSCs and the effectof the differentiation on the brain trauma repair.