west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "组织工程骨" 68 results
  • HISTOLOGICAL OBSERVATION OF BIODERIVED BONE PREPARED BY DIFFERENTMETHODS AFTER IMPLANTATION

    Objective To explore the histological changes of bio-derived bone prepared by different methods after implantation, and to provide the scaffold material from xenogeneic animal for tissue engineering. Methods Theextremities of porcine femur were cut into 0.5 cm×0.5 cm×0.5 cm. Then they were divided into 5 groups according to different preparation methods: group A was fresh bone just repeatedly rinsed by saline; group B was degreased; group C was degreased and decalcificated; group D was degreased, acellular and decalcificated; group E wasdegreased and acellular. All the materials were implantated into femoral muscle pouch of rabbit after 25 kGy irradiation sterilization. The cell counting ofinflammatory cells and osteoclasts, HE and Masson staining, material degradation, collagen and new bone formation were observed at 2, 6, and 12 weeks postoperatively. Results The residue level of trace element in biomaterials prepared by different methods is in line with the standards. All the animals survived well. There were no tissue necrosis, fluid accumulation or inflammation at all implantation sites at each time point. The inflammatory cells counting was most in group A, and there was significant difference compared with other groups(P<0.05). There was no significant difference in osteoclasts counting among all groups. For the index of HE and Masson staining, collagen and new bone formation, groups C and D were best, group E was better, and groups A and B were worse. Conclusion The degreased, acellular and decalcificated porcine bone is better in degradation,bone formation, and lower inflammatory reaction, it can be used better scaffold material for tissue engineered bone.

    Release date:2016-09-01 09:23 Export PDF Favorites Scan
  • CARRIER COMBINATION OF TISSUE ENGINEERED BONE BY SODIUM ALGINATE AND XENOGRAFT BONEAND BONE FORMATION IN VIVO

    【Abstract】 Objective To produce a new bone tissue engineered carrier through combination of xenograft bone (X)and sodium alginate (A) and to investigate the biological character of the cells in the carrier and the abil ity of bone-forming in vivo, so as to provide experimental evidence for a more effective carrier. Methods BMSCs were extracted from 2-week-old New Zealand rabbits and the BMSCs were induced by rhBMP-2 (1 × 10-8mol/L). The second generation of the induced BMSCs was combined with 1% (V/W) A by final concentration of 1 × 105/mL. After 4-day culture, cells in gel were investigated by HE staining. The second generation of the induced BMSCs was divided into the DMEM gel group and the DMEM containing 1% A group. They were seeded into 48 well-cultivated cell clusters by final concentration of 1 × 105/mL. Seven days later, the BMP-2 expressions of BMSCs in A and in commonly-cultivated cells were compared. The second generation of the induced BMSCs was mixed with 2% A DMEM at a final concentration of 1 × 1010/mL. Then it was compounded with the no antigen X under negativepressure. After 4 days, cells growth was observed under SEM. Twenty-four nude mice were randomly divided into 2 group s (n=12).The compound of BMSCs-A-X (experimental group) and BMSCs-X (control group) with BMSCs whose final concentrat ion was 1 × 1010/mL was implanted in muscles of nude mice. Bone formation of the compound was histologically evaluated by Image Analysis System 2 and 4 weeks after the operation, respectively. Results Cells suspended in A and grew plump. Cell division and nuclear fission were found. Under the microscope, normal prol iferation, many forming processes, larger nucleus, clear nucleolus and more nuclear fission could be seen. BMP-2 expression in the DMEM gel group was 44.10% ± 3.02% and in the DMEM containing 1% A group was 42.40% ± 4.83%. There was no statistically significant difference between the two groups (P gt; 0.05). A was compounded evenly in the micropore of X and cells suspended in A 3-dimensionally with matrix secretion. At 2 weeks after the implantation, according to Image Analysis System, the compound of BMSCs-A-X was 5.26% ± 0.24% of the totalarea and the cartilage-l ike tissue was 7.31% ± 0.32% in the experimental group; the compound of BMSCs-X was 2.16% ± 0.22% of the total area and the cartilage-l ike tissue was 2.31% ± 0.21% in the control group. There was statistically significant difference between the two groups (P lt; 0.05). At 4 weeks after the operation, the compound of BMSCs-A-X was 7.26% ± 0.26% of the total area and the cartilage-l ike tissue was 9.31% ± 0.31% in the experimental group; the compound of BMSCs-X was 2.26% ± 0.28% of the total area and the cartilage-l ike tissue was 3.31% ± 0.26% in the control group. There was statistically significant difference between the two groups (P lt; 0.05). Conclusion The new carrier compounding A and no antigen X conforms to the superstructural principle of tissue engineering, with maximum cells load. BMSCs behave well in the compound carrier with efficient bone formation in vivo.

    Release date:2016-09-01 09:12 Export PDF Favorites Scan
  • STUDIES OF PREPARATION, MORPHOLOGY AND IN VITRO RELEASE ON BIODERIVED MATERIAL-WO-1 DELIVERY SYSTEM

    Objective To study the potential of a bioderived material combined with Pluronic F-127 in vitro as a delivery vehicle for WO-1 in the bone repair therapy. Methods Bio-derived materials were fabricated and loaded with WO-1 by Pluronic F-127. Micromorphology and porosity were detected by the scanning electron microscope and the digital image analysis system respectively. The WO-1 release from the system in vitro was studied by the high performance liquid chromatography. Results Bio-derived material-WO-1 drug delivery systems were created with the interconnected pore network. Theporosity and pore size of the system were 55% and 522.43±16.75 μm respectively, compared with those of bio-derived materials, which were 75% and 623.67±12.31 μm respectively. And the main composition of the system was HA. The in vitrorelease kinetics of WO-1 revealedthat an effective therapeutic concentration(0.2-0.8 μg/ml) of WO-1 was maintained for 6 days after a high initial burst release. Conclusion The bio-derived material-WO-1 drug delivery system can be used in the bone repair therapy. However, the in vivostudy on it is still needed.

    Release date:2016-09-01 09:24 Export PDF Favorites Scan
  • THE EFFECT OF BONE-RELATED GROWTH FACTORS ON THE PROLIFERATION AND DIFFERENTIATION OF MARROW MESENCHYMAL STEM CELLS IN VITRO

    Objective To investigate the effect of dexamethasone, recombinant human fibroblast growth factor (rhFGF) and recombinant human bone morphogenetic protein 2 (rhBMP-2) on the proliferation and differentiation of marrow stromal stem cells (MSCs) for their further application in tissue engineering. Methods MSCs were isolated and cultured in vitro, and then exposed to different dose of dexamethasone (10-8 mol/L,10-7 mol/L,10 -6 mol/L), rhFGF (50 ng/ml,200 ng/ml,500 ng/ml) and rhBMP-2 (50 ng/ml,500 ng/ml,1 000 ng/ml) respectively. The total protein and alkaline phosphatase (ALP) activity of each group was measured on 4th and 7th day. Results Exposure of MSCs with 10-6mol/L dexamethasone inhibited protein synthesis without obvious effects on ALP expression. The application of rhFGF significantly promoted cell proliferation but inhibited ALP activity. In comparison, ALP expression was significantly enhanced by treatment of rhBMP-2 at concentration of 500 ng/ml,1 000 ng/ml. Conclusion The exposure of dexamethasone as well as rhBMP-2 to MSCs with an appropriate concentration promotes osteogenic expression without reverse effects on cell proliferation, which indicates the great potential value in cell-based strategy of bone tissue engineering.

    Release date:2016-09-01 09:28 Export PDF Favorites Scan
  • COMPARATIVE STUDY ON GRAFT OF AUTOGENEIC ILIAC BONE AND TISSUE ENGINEERED BONE

    OBJECTIVE: To compare the clinical results of repairing bone defect of limbs with tissue engineering technique and with autogeneic iliac bone graft. METHODS: From July 1999 to September 2001, 52 cases of bone fracture were randomly divided into two groups (group A and B). Open reduction and internal fixation were performed in all cases as routine operation technique. Autogeneic iliac bone was implanted in group A, while tissue engineered bone was implanted in group B. Routine postoperative treatment in orthopedic surgery was taken. The operation time, bleeding volume, wound healing and drainage volume were compared. The bone union was observed by the X-ray 1, 2, 3, and 5 months after operation. RESULTS: The sex, age and disease type had no obvious difference between groups A and B. all the wounds healed with first intention. The swelling degree of wound and drainage volume had no obvious difference. The operation time in group A was longer than that in group B (25 minutes on average) and bleeding volume in group A was larger than that in group B (150 ml on average). Bone union completed within 3 to 7 months in both groups. But there were 2 cases of delayed union in group A and 1 case in group B. CONCLUSION: Repair of bone defect with tissue engineered bone has as good clinical results as that with autogeneic iliac bone graft. In aspect of operation time and bleeding volume, tissue engineered bone graft is superior to autogeneic iliac bone.

    Release date:2016-09-01 10:15 Export PDF Favorites Scan
  • EFFECTS OF IMPACTION ON TISSUE ENGINEERED BONE MODIFIED BY BMP-2 GENE

    Objective To observe effects of the direct impaction onthe cell survival and the bone formation of the tissue engineered bone modified by the adenovirus mediated human bone morphogenetic protein 2 (Adv-hBMP2) gene and to verify the feasibility of the impacted grafting with it. Methods The marrow stromal cells (MSCs) were separated from the canine bone marrow and were cultured. MSCs were transfected with the Adv-hBMP2 gene and combined with the freeze-dried cancellous bone (FDB) to form the tissue engineered bone. Four days after the combination, the tissue engineered bone was impacted in a simulated impactor in vitro and implanted in the mouse. The cell survivals were evaluated with SEM 1 and 4 days after the combination, immediately after the impaction, and 1 and 4 days after the impaction, respectively. The bone formation and the allograft absorption were histologically evaluated respectively. Results There were multiple layers of the cells and much collagen on FDB before the impaction. Immediately after the impaction, most of the cells on the direct contact area disappearedand there was much debris on the section. Some of the cells died and separatedfrom the surface of FDB at 1 day, the number of the cells decreased but the collagen increased on the surface at 4 days. Histologically, only the fibrous tissue was found in FDB without the cells, the bone formation on FDB was even in distribution and mass in appearance before the impaction, but declined and was mainly on the periphery after the impaction in the AdvhBMP2 modified tissue-engineered bone. Conclusion The simulated impaction can decrease the cells survival and the bone formation of the AdvhBMP-2 modified tissue-engineered bone. The survival cells still function well.It is feasible to use the tissue engineered bone in the impaction graft.

    Release date:2016-09-01 09:25 Export PDF Favorites Scan
  • BIO-DERIVED BONE TRANSPLANTATION WITH TISUE ENGINEERING TECHNIQUE: PRELIMINARY CLINICAL TRIAL

    OBJECTIVE: To sum up the clinical results of bio-derived bone transplantation in orthopedics with tissue engineering technique. METHODS: From January 2000 to May 2002, 52 cases with various types of bone defect were treated with tissue engineered bone, which was constructed in vitro by allogeneous osteoblasts from periosteum (1 x 10(6)/ml) with bio-derived bone scaffold following 3 to 7 days co-culture. Among them, there were 7 cases of bone cyst, 22 cases of non-union or malunion of old fracture, 15 cases of fresh comminuted fracture of bone defect, 4 cases of spinal fracture and posterior route spinal fusion, 3 cases of bone implant of alveolar bone, 1 case of fusion of tarsotarsal joint. The total weight of tissue engineered bone was 349 g in all the cases, averaged 6.7 g in each case. RESULTS: All the cases were followed up after operation, averaged in 18.5 months. The wound in all the case healed by first intention, but 1 case with second intention. Bone union was completed within 3 to 4.5 months in 50 cases, but 2 cases of delayed union. Six cases were performed analysis of CD3, CD4, CD8, ICAM-1 and VCAM-1 before and after operation, and no obvious abnormities were observed. CONCLUSION: Bio-derived tissue engineered bone has good osteogenesis. No obvious rejection and other complications are observed in the clinical application.

    Release date:2016-09-01 10:14 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON TISSUE ENGINEERED BONES CONSTRUCTED BY HUMAN BONE MORPHOGENETIC PROTEIN 2 GENE-MODIFIED HUMAN BONE MARROW MESENCHYMAL STEM CELLS

    ObjectiveTo investigate the bone regeneration potential of cell-tissue engineered bone constructed by human bone marrow mesenchymal stem cells (hBMSCs) expressing the transduced human bone morphogenetic protein 2 (hBMP-2) gene stably. MethodsThe full-length hBMP-2 gene was cloned from human muscle tissues by RT-PCR and connected into a vector to consturct a eukaryotic expression system. And then the gene expression system was transduced to hBMSCs with lipidosome. hBMSCs were transfected by hBMP-2 gene (experimental group) and by empty plasmid (negative control group), untransfected hBMP-2 served as blank control group. RT-PCR, dot-ELISA, immunohistochemical analysis and ALP activity were performed to compare and evaluate the situation of hBMP-2 expression and secretion after transfection. hBMSCs transfected by hBMP-2 gene were seeded on hydroxyapatite (HA) and incubated for 4 days to construct the hBMP-2 gene modified tissue engineered bone, and then the tissue engineered bone was observed by the inverted phase contrast microscope and scanning electron microscope. Then the hBMP-2 gene modified tissue engineered bone (group A, n=3), empty plasmid transfected hBMSCs seeded on HA (group B, n=3), hBMSCs suspension transfected by hBMP-2 gene (group C, n=3), and hBMP-2 plasmids and lipidosome (group D, n=3) were implanted into bilateral back muscles of nude mice. The osteogenic activity was detected by HE staining and alcian blue staining after 4 weeks. ResultsAt 48 hours and 3 weeks after transfection, RT-PCR and dot-ELISA results indicated that the transfected hBMSCs could express and secrete active and exogenous hBMP-2 stably. The immunohistochemical staining was positive, and the ALP activity in the transfected hBMSCs was significantly higher than that in two control groups (P < 0.05). The transfected hBMSCs had a good attaching and growing on the three-demension suface of HA under inverted phase contrast microscope and scanning electron microscope. In vivo study indicated that a lot of new bone formation was obviously found at 4 out of 6 sides of back muscles in group A. Some new bone formation at both sides of back muscles was observed in 1 of 3 mice in group B. No new bone formation was found in group C. A few new bone formation was observed at one side of back muscles in group D. ConclusionThe tissue engineered bone constructed by hBMP-2 gene modified hBMSCs and HA is able to express and secrete active hBMP2 stably and can promote new bone formation effectively in muscles of nude mice.

    Release date:2016-12-12 09:20 Export PDF Favorites Scan
  • RADIOLOGICAL STUDY ON REPAIR OF GOAT TIBIA DEFECT WITH MARROW STROMAL STEM CELLS AND BIODERIVED BONE

    Objective To investigate the ability to repair goat tibia defect with marrow stromal stem cells (MSCs) and bio-derived bone, and the feasibility of the compounds as bone substitute material. Methods MSCs were cultured with the bioderived bone in vitro, and the 20 mm tibia defect of goat was made and fixedwith plate. Eighteen goats were divided into experimental group, control group and blankgroup. The defects were not filled with anything in blank group, with tissue engineering bone in experimental group and bio-derived bone in control group. Therepair capability was assessed by physical, X-ray and bone mineral density examinations8,12,16, and 24 weeks after operation. Results In experimental group, the defects were partially repaired 8 weeks, and completely repaired12 and 16 weeks; there was significant difference in bone density between experimental group and control group (P<0.05) 8,12 and 16 weeks, but no significant difference 24 weeks. The defects of blank group were not repaired 24weeks. Conclusion The tissue engineering bone can efficiently repair bone defect, and its repair capability is better than that of bio-derived bone alone both in quantity and quality of boneformation.

    Release date:2016-09-01 09:33 Export PDF Favorites Scan
  • Heterotopic osteogenesis study of tissue engineered bone by co-culture of vascular endothelial cells and adipose-derived stem cells

    ObjectiveTo investigate the heterotopic osteogenesis of tissue engineered bone using the co-culture system of vascular endothelial cells (VECs) and adipose-derived stem cells (ADSCs) as seed cells.MethodsThe partially deproteinized biological bone (PDPBB) was prepared by fibronectin combined with partially deproteinized bone (PDPB). The ADSCs of 18-week-old Sprague Dawley (SD) rats and VECs of cord blood of full-term pregnant SD rats were isolated and cultured. Three kinds of tissue engineered bone were constructed in vitro: PDPBB+VECs (group A), PDPBB+ADSCs (group B), PDPBB+co-cultured cells (VECs∶ADSCs was 1∶1, group C), and PDPBB was used as control group (group D). Scanning electron microscopy was performed at 10 days after cell transplantation to observe cell adhesion on scaffolds. Forty-eight 18-week-old SD rats were randomly divided into groups A, B, C, and D, with 12 rats in each group. Four kinds of scaffolds, A, B, C, and D, were implanted into the femoral muscle bags of rats in corresponding groups. The animals were killed at 2, 4, 8, and 12 weeks after operation for gross observation, HE staining and Masson staining histological observation, and the amount of bone collagen was measured quantitatively by Masson staining section.ResultsScanning electron microscopy showed that the pores were interconnected in PDPB materials, and a large number of lamellar protein crystals on the surface of PDPBB modified by fibronection were loosely attached to the surface of the scaffold. After 10 days of co-culture PDPBB and cells, a large number of cells attached to PDPBB and piled up with each other to form cell clusters in group C. Polygonal cells and spindle cells were mixed and distributed, and some cells grew along bone trabeculae to form cell layers. Gross observation showed that the granulation tissue began to grow into the material pore at 2 weeks after operation. In group C, a large number of white cartilage-like substances were gradually produced on the surface of the material after 4 weeks, and the surface of the material was uneven. At 12 weeks, the amount of blood vessels on the surface of group A increased, and the material showed consolidation; there was a little white cartilage-like material on the surface of group B, but the pore size of the material did not decrease significantly; in group D, the pore size of the material did not decrease significantly. Histological observation showed that there was no significant difference in the amount of bone collagen between groups at 2 weeks after operation (F=2.551, P=0.088); at 4, 8, and 12 weeks after operation, the amount of bone collagen in group C was significantly higher than that in other 3 groups, and that in group B was higher than that in group D (P<0.05); there was no significant difference between group A and groups B, D (P>0.05).ConclusionThe ability of heterotopic osteogenesis of tissue engineered bone constructed by co-culture VECs and ADSCs was the strongest.

    Release date:2019-09-18 09:49 Export PDF Favorites Scan
7 pages Previous 1 2 3 ... 7 Next

Format

Content