ObjectiveTo study the changes of levels of α subunits of stimulatory (Gsα) and inhibitory guanine nucleotide binding protein (Giα) in newborn guinea pig (0 2 days old) myocardium undergoing global ischemic reperfusion, and influences on the changes by St.Thomas Ⅱ and cold blood cardioplegic solution.MethodsThirty newborn guinea pigs were randomly assigned to three groups. GroupⅠ ( n = 10): the newborn hearts suffered by hypothermic global ischemia; group Ⅱ( n =10): the newborn hearts arrested by St. Thomas Ⅱ , and group Ⅲ ( n = 10): the newborn hearts arrested by cold blood cardioplegic solution. Levels of Gsα and Giα were investigated with Western blot analysis.ResultsNo differences of levels of Gsα and Giα were found in three groups before ischemia ( P gt;0.05). The level of Gsα after ischemia was significantly decreased than before ischemia in groupⅠand group Ⅱ ( P lt; 0 01), whereas no pronounced changes in group Ⅲ ( P gt;0.05) were noted after ischemia. The level of Gsα in group Ⅲ was not significantly changed after reperfusion compared with before ischemia( P gt;0 05), and it was much higher than those in groupⅠand group Ⅱ ( P lt; 0 01). Level of Giα was found not markedly changed in group Ⅲ after reperfusion compared with that before ischemia, but was notable higher in groupⅠand group Ⅱ( P lt;0.01). ConclusionsSignificant decrease of level of Gsα, whereas marked increase of level of Giα are found in myocardium of newborn guinea pig undergoing hypothermic (20℃) ischemic reperfusion. No impact of St. Thomas Ⅱ on these changes is verified, but recovery to the level of Gsα and Giα before ischemia is achieved by cold blood cardioplegic solution after ischemia and reperfusion. Unbalance between Gsα and Giα is the one of the mechanisms of ischemic reperfusion injury for immature myocardium.
Objective To investigate the maximum tolerance limit of rats to hepatic inflow occlusion with portal vein blood bypss (PBB) in normothermia. Methods First. A new animal model was established, the animal survival rate were calculated following 7 days of reperfusion after hepatic inflow occlusion of 30, 60, 90, 100, 110, 120 min or portal triad clamping (PTC) of 30 min. And then, the hepatic energy metabolism (RCR, P/O, ATP, AKBR) was studied following 30, 90, 120 min of ischemia or 1, 6, and 24 hours of reperfusion after the ischemia. According to the reversibility of the hepatic motochondrial function injury and maximum as long as a period of liver warm ischemia of all animal postoperative 7 days survial, the safe limit of rat to hepatic inflow occlusion was evaluated. Results The survival rate on postoperative 7 days was one hundred percent subjected to 30, 60 and 90 min of hepatic inflow occlusion, and 50, 30, 20 percent in 100, 110, 120 min, respectively, the survival rate in rats with 30 min of portal triad champing was about 40 percent. The parameters of hepatic motochondrial function reflecting the degree of liver damage to ischemia showed significantly different as compared to sham group. The functional lesion was exacerbated during inital reperfusion, then was restored progressively in PBB-30 min and PBB-90 min groups, but was maintained low level in PBB-120 min and PTC-30 min groups.Conclusion The 90 minutes is the maximum limit of rats to hepatic inflow occlusion in normothermia.
【Abstract】ObjectiveOn the basis of traditional transplantation model, a successful model of pancreaticoduodenal transplantation (PDT) were established in rats, which is the foundation of basic and clinical transplantation research. Methods We improved the technique of microoperation on donor and harvested high-quality graft. The dual cuff technique was applied to end-to-end anastomose proximal part of abdominal aorta and portal vein with left renal aorta and vein of recipient, and distal part of abdominal aorta was connected with Y-tube. External secretion was performed by duodenum stoma. The PDT model was finished without blocking systemic circulation and portal vein system. Random blood glucose levels and drainage were monitored postoperatively to evaluate the function of endocrine and ectocrine. Results Thirty operations were done. The total procedure of transplantation lasted 2 hours. Moreover the operation on recipient and the reconstruction of vessels took only (26±5) and (25±5) minutes, respectively. The success rate was elevated to 100%. The ectocrine function was restored within 2 hours after operation. Except for 3 cases of non-function graft because of thrombosis in cannula, the glucose level of the remaining recipients was reduced to normal level 6 h or 24 h after transplantation. The survival rate of graft function was 90% (27/30). Conclusion This model is finished without special equipment and can recover the endocrine function in advance. It is a simple and stable model, which might be used in research of the theoretical problems involved in clinical pancreas transplantation.
Objective To investigate the protective effects of liposome prostaglandin E1(Lipo-PGE1) on myocardial ischemia-reperfusion injury (MIRI) during cardiopulmonary bypass (CPB). Methods Thirty-two patients with clearly diagnosed heart valve disease and congenital heart disease such as atria septal defect (ASD) and ventricular septal defect (VSD) were selected in our hospital. The patients were randomly divided into two groups (16 patients in each group), Lipo-PGE1 group: Lipo-PGE1(2ng/kg·min) was continuously pumped before starting of CPB until 2 h after ascending aortic off-clamping; control group: using the same volume of normal saline, arterial blood samples were taken before CPB, at 1, 2, 6 and 24 h after the ascending aortic off-clamping. The value of cardiac troponin I (cTnI), creatine kinase MBmass (CK-MB), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), intercellular adhesion molecule-l(sICAM-1) were measured. Results cTnI, CK-MB, IL-6, TNF-α and sICAM-1 showed no significant difference in the two groups before CPB (P〉0. 05). At 1,2, 6 and 24h after ascending aortic off-clamping, those values rose significantly than before CPB(P〈0. 01), but Lipo-PGE1 group's values were lower than those in the control group (P〈0. 05). Conclusions Lipo-PGE1 (2ng/kg·min) continuously pumped from before CPB to 2h after ascending aortic off-clamping can inhibit effectively the production of IL-6, TNF-α, and reduce the expression of sICAM-1, attenuate the process of inflammation, lighten the injuries of myocardial cells, and effectively protect the MIRI during CPB open heart surgeries.
Objective To study the mechanisms and treatment of ischemia /reperfusion injury, expression of intracellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) were measured, the effect on suppression of ICAM-1 and VCAM-1 by the pyrrolidine dithiocarbamate (PDTC) were investigated. Methods Endothelial cells were divided into 3 groups, hypoxia group: endothelial cells were exposed in hypoxia condition, then returned to reoxygenation condition; the PDTC group: PDTC was added to the endothelial cells in the culture media before exposing to hypoxia condition; control group: endothelial cells underwent treatment. Confocal microscopy was used to detect expression of ICAM-1 and VCAM-1. Results ICAM-1 and VCAM-1 expression were low in endothelial cells of control group, and increased in hypoxia group . ICAM-1 and VCAM-1 expression of endothelial cells in PDTC group werelower than those in hypoxia group , but higher than those in control group. Conclusions It seems that hypoxia/ reoxygenation can activate the endothelial cells and increase the expression of cell adhesion molecules. PDTC can decrease the expression of ICAM-1 and VCAM-1. PDTC may prove benificial in the treatment of ischemia /reperfusion injury.
ObjectiveTo summarize the research progress of severed limb preservation by perfusion and to analyze difference in effect of severed limb preservation by different perfusate. MethodsThe domestic and foreign related literature about severed limb preservation by perfusion was extensively reviewed and analyzed. ResultsCurrently the main perfusate includes organ perfusate,free radical scavengers,energy mixture,blood substitutes,and whole blood.They can reduce the skeletal muscle's ischemia-reperfusion injury in different degrees. ConclusionDifferent perfusate can reduce the skeletal muscle's ischemia-reperfusion injury in different degrees,but the best effect of perfusate and personalized preservation method need further study.
Objective To investigate the effects of ischemic postconditioning (IPO) on inflammatory response inischemia-reperfusion (IR) injury of rat lungs in vivo. Methods Forty SD rats were randomly divided into 5 groups inclu-ding a sham surgery group (S group),a 30-minute IR group (I/R-30 group),a 120-minute IR group(IR-120 group),a 30-minute IPO group (IPO-30 group),and a 120-minute IPO group (IPO-120 group). There were 8 rats in each group. All therats received left thoracotomy after anesthesia. In the sham surgery group,a line was only placed around the left hilum butnot fastened. In the I/R-30 group and I/R-120 group,a line was fastened to block the blood flow of the left lung for 1 hour,then loosened for reperfusion for 30 minutes and 120 minutes respectively. In the IPO-30 group and IPO-120 group,afterblocking the blood flow of the left lung for 1 hour,the left hilum was fastened for 10 seconds and loosened for 10 seconds(repeating 3 times for 1 minute),then the line was loosened for 30 minutes and 120 minutes respectively. The levels of interleukin-10 (IL-10) in lung tissues and soluble intercellular adhesion molecule-1 (sICAM-1) in plasma were measured. Histopathological changes of lung tissues were observed and diffuse alveolar damage (DAD) scores was calculated.Results The levels of plasma sICAM-1 in the I/R-30 group and I/R-120 group were significantly higher than that of S group [(2.140±0.250)μg/L vs. (0.944±0.188)μg/L,P=0.003;(2.191±0.230)μg/L vs. (0.944±0.188)μg/L,P=0.003]. IL-10levels in lung tissues in the I/R-30group and I/R-120 group were also significantly higher than that of S group[(15.922±0.606)pg/mg pro vs. (7.261±0.877)pg/mg pro,P=0.037;(17.421±1.232)pg/mg pro vs. (7.261±0.877)pg/mg pro,P=0.042]. Pathologic lesions of lung tissues in the I/R-30 group and I/R-120 group were more severe than that of S group. After IPO, plasma sICAM-1 levels in the IPO-30 group and IPO-120 group were significantly lower than those in the I/R-30group and I/R-120 group respectively [(1.501±0.188)μg/L vs.(2.140±0.250)μg/L,P=0.038;(1.350±0.295)μg/L vs.(2.191±0.230)μg/L,P=0.005]. IL-10 levels in lung tissues in the IPO-30 group and IPO-120 group were significantly higherthan those in the I/R-30 group and I/R-120 group respectively [(20.950±1.673)pg/mg pro vs.(15.922±0.606)pg/mgpro,P=0.008;(25.334±1.173)pg/mg pro vs.(17.421±1.232)pg/mg pro,P=0.006]. DAD scores in the IPO-30 group andIPO-120 group were significantly lower than those in the I/R-30 group and I/R-120 group respectively [6.8±1.4 vs. 11.5±1.9,P=0.007;7.5±1.6 vs. 13.2±1.7,P=0.005]. Pathological lesions of the lung tissues of IPO groups were less severe than those of I/R groups. Conclusion IPO can attenuate IR injury by inhibiting inflammatory response in rat lungs.
Objective To investigate the molecular mechanism of multiple cellular factors expressed shortly after ischemia reperfusion (IR) injury from the pathway of nuclear factor kappa B (NF κB). Methods The isolated heart models were established and sixty six rats were randomly divided into experimental group and control group. The deoxyribonucleic acid (DNA) binding activities of NF κB, the inhibitory kappa B (IκBα) levels in cytoplasm and tumor necrosis factor α (TNF α) messenger ribonucleic acid (mRNA) expressions were determined after 5, 15 min ischemia in experimental group, both after 0, 5, 15, 30 min ischemia and concomitantly 5, 15, 30, 45, 60 min reperfusion in control group. Results Augment of DNA binding activities of NF κB and reduction of IκBα in cytoplasm shortly after ischemia results were observed in control group. The level of IκBα was restored after reperfusion, the DNA binding activities of NF κB was further augmented. DNA binding activities of NF κB and TNF α mRNA expressions were lower in experimental group than those in control group. Conclusions NF κB in IR myocardium is activated by two different pathways: p65 p50 heterodimers and p50 p50 homodimers. In addition, the results suggest that early activation of NF κB induced by ischemia in the myocardium could be a signal mechanism for controlling and regulating immediate gene expressions during ischemia reperfusion.
【Abstract】ObjectiveTo investigate whether heme oxygenase-1 can alleviate the ischemiareperfusion injury of the aged donor liver. MethodsThe activity of superoxide dismutase (SOD) and catalase (CAT), and the contents of tocopherol (Vit E), ascorbic acid (Vit C) and malondialdehyde (MDA) were measured in the livers of adult SD rats (n=5) and aged SD rats (n=5). The experimental aged donor group (n=30) received intraperitoneal injection of Hemin 24 hours before operation, the control aged donor group(n=30) received saline. The histologic changes and apoptosis in the donor liver were observed. ResultsThe activity of SOD and the contents of Vit E and Vit C decreased significantly in 5 aged rats(P<0.05), but the content of MDA increased(P<0.05). Before the harvesting of the grafts, the activity of SOD and the contents of Vit E and Vit C increased significantly in rats pretreated with Hemin (P<0.05) and the content of MDA decreased(P<0.05). The apoptotic cells in the livers pretreated with Hemin also decreased significantly after reperfusion(P<0.05). ConclusionThe liver of aged rat presents oxidative stress and peroxidative state. Ischemia-reperfusion injury can be alleviated by the induction of HO-1.