west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "网络" 328 results
  • Application of Artificial Neural Network in Disease Prognosis Research

    Abstract: Diseases prognosis is often influenced by multiple factors, and some intricate non-linear relationships exist among those factors. Artificial neural network (ANN), an artificial intelligence model, simulates the work mode of biological neurons and has a b capability to analyze multi-factor non-linear relationships. In recent years, ANN is increasingly applied in clinical medical fields, especially for the prediction of disease prognosis. This article focuses on the basic principles of ANN and its application in disease prognosis research.

    Release date:2016-08-30 05:28 Export PDF Favorites Scan
  • Application of deep neural network models to the electrocardiogram

    Electrocardiogram (ECG) is a noninvasive, inexpensive, and convenient test for diagnosing cardiovascular diseases and assessing the risk of cardiovascular events. Although there are clear standardized operations and procedures for ECG examination, the interpretation of ECG by even trained physicians can be biased due to differences in diagnostic experience. In recent years, artificial intelligence has become a powerful tool to automatically analyze medical data by building deep neural network models, and has been widely used in the field of medical image diagnosis such as CT, MRI, ultrasound and ECG. This article mainly introduces the application progress of deep neural network models in ECG diagnosis and prediction of cardiovascular diseases, and discusses its limitations and application prospects.

    Release date: Export PDF Favorites Scan
  • The research advancements in gelastic epilepsy

    Gelastic seizure (GS) is a type of epilepsy characterized primarily by inappropriate bursts of laughter, with or without other epileptic events. Based on the timing of symptoms, the presence of emotional changes, and disturbances of consciousness, GS is classified into simple and complex types. The generation of laughter involves two major neural pathways: the emotional pathway and the volitional pathway. The neural network involved in GS includes structures such as the frontal lobe, insula, cingulate gyrus, temporal lobe, and brainstem.The most common cause of GS is a hypothalamic hamartoma, and stereotactic electroencephalography can record discharges from the lesion itself. Surgical removal of the hypothalamic hamartoma can result in immediate cessation of GS in the majority of patients, while some may experience partial improvement with persistent epileptic-like discharges detectable on scalp electroencephalography (EEG). Early surgical intervention may improve prognosis.In cases of non-hypothalamic origin of GS with no apparent imaging abnormalities, focal discharges are often observed on EEG and these cases respond well to antiepileptic drugs. Conversely, patients with structural abnormalities suggested by imaging studies tend to have multifocal discharges and a poorer response to medication. In a small subset of medically refractory non-hypothalamic GS, surgical intervention can effectively control symptoms.This article provides a comprehensive review of the etiology, neural networks involved, EEG characteristics, and treatment options for GS, with the goal of improving understanding of this relatively rare type of epileptic seizure.

    Release date:2024-01-02 04:10 Export PDF Favorites Scan
  • The current applicating state of neural network-based electroencephalogram diagnosis of Alzheimer’s disease

    The electroencephalogram (EEG) signal is a general reflection of the neurophysiological activity of the brain, which has the advantages of being safe, efficient, real-time and dynamic. With the development and advancement of machine learning research, automatic diagnosis of Alzheimer’s diseases based on deep learning is becoming a research hotspot. Started from feedforward neural networks, this paper compared and analysed the structural properties of neural network models such as recurrent neural networks, convolutional neural networks and deep belief networks and their performance in the diagnosis of Alzheimer’s disease. It also discussed the possible challenges and research trends of this research in the future, expecting to provide a valuable reference for the clinical application of neural networks in the EEG diagnosis of Alzheimer’s disease.

    Release date:2023-02-24 06:14 Export PDF Favorites Scan
  • Research on the effect of background music on spatial cognitive working memory based on cortical brain network

    Background music has been increasingly affecting people’s lives. The research on the influence of background music on working memory has become a hot topic in brain science. In this paper, an improved electroencephalography (EEG) experiment based on n-back paradigm was designed. Fifteen university students without musical training were randomly selected to participate in the experiment, and their behavioral data and the EEG data were collected synchronously in order to explore the influence of different types of background music on spatial positioning cognition working memory. The exact low-resolution brain tomography algorithm (eLORETA) was applied to localize the EEG sources and the cross-correlation method was used to construct the cortical brain function networks based on the EEG source signals. Then the characteristics of the networks under different conditions were analyzed and compared to study the effects of background music on people’s working memory. The results showed that the difference of peak periods after stimulated by different types of background music were mainly distributed in the signals of occipital lobe and temporal lobe (P < 0.05). The analysis results showed that the brain connectivity under the condition with background music were stronger than those under the condition without music. The connectivities in the right occipital and temporal lobes under the condition of rock music were significantly higher than those under the condition of classical music. The node degrees, the betweenness centrality and the clustering coefficients under the condition without music were lower than those under the condition with background music. The node degrees and clustering coefficients under the condition of classical music were lower than those under the condition of rock music. It indicates that music stimulation increases the brain activity and has an impact on the working memory, and the effect of rock music is more remarkable than that of classical music. The behavioral data showed that the response accuracy in the state of no music, classical music and rock music were 86.09% ± 0.090%, 80.96% ± 0.960% and 79.36% ± 0.360%, respectively. We conclude that background music has a negative impact on the working memory, for it takes up the cognitive resources and reduces the cognitive ability of spatial location.

    Release date:2020-10-20 05:56 Export PDF Favorites Scan
  • Establishment and test of intelligent classification method of thoracolumbar fractures based on machine vision

    Objective To develop a deep learning system for CT images to assist in the diagnosis of thoracolumbar fractures and analyze the feasibility of its clinical application. Methods Collected from West China Hospital of Sichuan University from January 2019 to March 2020, a total of 1256 CT images of thoracolumbar fractures were annotated with a unified standard through the Imaging LabelImg system. All CT images were classified according to the AO Spine thoracolumbar spine injury classification. The deep learning system in diagnosing ABC fracture types was optimized using 1039 CT images for training and validation, of which 1004 were used as the training set and 35 as the validation set; the rest 217 CT images were used as the test set to compare the deep learning system with the clinician’s diagnosis. The deep learning system in subtyping A was optimized using 581 CT images for training and validation, of which 556 were used as the training set and 25 as the validation set; the rest 104 CT images were used as the test set to compare the deep learning system with the clinician’s diagnosis. Results The accuracy and Kappa coefficient of the deep learning system in diagnosing ABC fracture types were 89.4% and 0.849 (P<0.001), respectively. The accuracy and Kappa coefficient of subtyping A were 87.5% and 0.817 (P<0.001), respectively. Conclusions The classification accuracy of the deep learning system for thoracolumbar fractures is high. This approach can be used to assist in the intelligent diagnosis of CT images of thoracolumbar fractures and improve the current manual and complex diagnostic process.

    Release date:2021-11-25 03:04 Export PDF Favorites Scan
  • THE STIMULATING EFFECTS OF bFGF ON FIBROBLAST FUNCTION AND ITS C-FOS GENE EXPRESSION

    OBJECTIVE: To study the stimulating effects of basic fibroblast growth factor(bFGF) on fibroblast function and its ability to expression of c-fos gene. Furthermore, to explore the possible network action between bFGF and oncogene in modulating wound healing. METHODS: Cultured rat fibroblasts were divided into bFGF stimulating group and control group. Fibroblasts in bFGF stimulating group were treated with bFGF in a dosage of 40 ng/culture hole, while the control fibroblasts were treated with the same vehicle without bFGF. The morphology, cell vitality and their ability to express c-fos gene in the fibroblasts in both groups were studied with MTT and immunohistochemical methods. RESULTS: All fibroblasts in bFGF treated groups were enlarged and showed increased vitality with MTT method. C-fos gene expression in bFGF stimulating group was increased, especially in nucleus when compared with those in control group. CONCLUSION: The results show that the function and the ability to express c-fos gene in bFGF treated fibroblasts are enhanced. Combined with our previous studies, it may make a conclusion that there is a network regulation mechanism between growth factors and some oncogenes.

    Release date:2016-09-01 10:21 Export PDF Favorites Scan
  • Research on arrhythmia classification algorithm based on adaptive multi-feature fusion network

    Deep learning method can be used to automatically analyze electrocardiogram (ECG) data and rapidly implement arrhythmia classification, which provides significant clinical value for the early screening of arrhythmias. How to select arrhythmia features effectively under limited abnormal sample supervision is an urgent issue to address. This paper proposed an arrhythmia classification algorithm based on an adaptive multi-feature fusion network. The algorithm extracted RR interval features from ECG signals, employed one-dimensional convolutional neural network (1D-CNN) to extract time-domain deep features, employed Mel frequency cepstral coefficients (MFCC) and two-dimensional convolutional neural network (2D-CNN) to extract frequency-domain deep features. The features were fused using adaptive weighting strategy for arrhythmia classification. The paper used the arrhythmia database jointly developed by the Massachusetts Institute of Technology and Beth Israel Hospital (MIT-BIH) and evaluated the algorithm under the inter-patient paradigm. Experimental results demonstrated that the proposed algorithm achieved an average precision of 75.2%, an average recall of 70.1% and an average F1-score of 71.3%, demonstrating high classification accuracy and being able to provide algorithmic support for arrhythmia classification in wearable devices.

    Release date:2025-02-21 03:20 Export PDF Favorites Scan
  • 利用毕博平台进行组织学与胚胎学教学的探索和体会

    摘要:在优质资源共享、促进信息化教学的时代背景下,许多高校开始建立基于Blackboard教学平台的毕博网络课程。结合组织胚胎学课程特点,我们就如何建立和在教学过程中如何充分利用该平台进行《组织学与胚胎学》教学等问题进行了探索,为今后提高网络教学质量、促进教学改革提供了经验。

    Release date:2016-09-08 10:12 Export PDF Favorites Scan
  • Efficient connectivity analysis of electroencephalogram in the pre-shot phase of rifle shooting based on causality method

    The directed functional connectivity in cerebral cortical is the key to understanding the pattern of the behavioral tissue. This process was studied to explore the directed functional network of rifle shooters at cerebral cortical rhythms from electroencephalogram (EEG) data, aiming to provide neurosciences basis for the future development of accelerating rifle skill learning method. The generalized orthogonalized partial directed coherence (gOPDC) algorithm was used to calculate the effective directed functional connectivity of the experts and novices in the pre-shot period. The results showed that the frontal, frontal-central, central, parietal and occipital regions were activated. Moreover, the more directed functional connections numbers in right hemispheres were observed compared to the left hemispheres. Furthermore, as compared to experts, novices had more activated regions, the stronger strength of connections and the lower value of the global efficiency during the pre-shot period. Those indirectly supported the conclusion that the novices needed to recruit more brain resources to accomplish tasks, which was consistent with " neural efficiency” hypothesis of the functional cerebral cortical in experts.

    Release date:2018-08-23 05:06 Export PDF Favorites Scan
33 pages Previous 1 2 3 ... 33 Next

Format

Content