Common spatial pattern (CSP) is a very popular method for spatial filtering to extract the features from electroencephalogram (EEG) signals, but it may cause serious over-fitting issue. In this paper, after the extraction and recognition of feature, we present a new way in which the recognition results are fused to overcome the over-fitting and improve recognition accuracy. And then a new framework for EEG recognition is proposed by using CSP to extract features from EEG signals, using linear discriminant analysis (LDA) classifiers to identify the user's mental state from such features, and using Choquet fuzzy integral to fuse classifiers results. Brain-computer interface (BCI) competition 2005 data setsⅣa was used to validate the framework. The results demonstrated that it effectively improved recognition and to some extent overcome the over-fitting problem of CSP. It showed the effectiveness of this framework for dealing with EEG.
In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCI) systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset Ⅳa from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.
In the present investigation, we studied four methods of blind source separation/independent component analysis (BSS/ICA), AMUSE, SOBI, JADE, and FastICA. We did the feature extraction of electroencephalogram (EEG) signals of brain computer interface (BCI) for classifying spontaneous mental activities, which contained four mental tasks including imagination of left hand, right hand, foot and tongue movement. Different methods of extract physiological components were studied and achieved good performance. Then, three combined methods of SOBI and FastICA for extraction of EEG features of motor imagery were proposed. The results showed that combining of SOBI and ICA could not only reduce various artifacts and noise but also localize useful source and improve accuracy of BCI. It would improve further study of physiological mechanisms of motor imagery.
With the breakthroughs of digitization, artificial intelligence and other technologies and the gradual expansion of application fields, more and more studies have been conducted on the application of digital intelligence technologies such as exoskeleton robots, brain-computer interface, and spinal cord neuromodulation to improve or compensate physical function after spinal cord injury (SCI) and improve self-care ability and quality of life of patients with SCI. The development of digital intelligent rehabilitation technology provides a new application platform for the functional reconstruction after SCI, and the digital and intelligentized rehabilitation technology has broad application prospects in the clinical rehabilitation treatment after SCI. This article elaborates on the current status of exoskeleton robots, brain-computer interface technology, and spinal cord neuromodulation technology for functional recovery after SCI.
Motor imagery (MI) is an important paradigm of driving brain computer interface (BCI). However, MI is not easy to control or acquire, and the performance of MI-BCI depends heavily on the performance of the subjects’ MI. Therefore, the correct execution of MI mental activities, ability evaluation and improvement methods play important and even critical roles in the improvement and application of MI-BCI system’s performance. However, in the research and development of MI-BCI, the existing researches mainly focus on the decoding algorithm of MI, but do not pay enough attention to the above three aspects of MI mental activities. In this paper, these problems of MI-BCI are discussed in detail, and it is pointed out that the subjects tend to use visual motor imagery as kinesthetic motor imagery. In the future, we need to develop some objective, quantitatively visualized MI ability evaluation methods, and develop some effective and less time-consumption training methods to improve MI ability. It is also necessary to solve the differences and commonness of MI problems between and within individuals and MI-BCI illiteracy to a certain extent.
Affective brain-computer interfaces (aBCIs) has important application value in the field of human-computer interaction. Electroencephalogram (EEG) has been widely concerned in the field of emotion recognition due to its advantages in time resolution, reliability and accuracy. However, the non-stationary characteristics and individual differences of EEG limit the generalization of emotion recognition model in different time and different subjects. In this paper, in order to realize the recognition of emotional states across different subjects and sessions, we proposed a new domain adaptation method, the maximum classifier difference for domain adversarial neural networks (MCD_DA). By establishing a neural network emotion recognition model, the shallow feature extractor was used to resist the domain classifier and the emotion classifier, respectively, so that the feature extractor could produce domain invariant expression, and train the decision boundary of classifier learning task specificity while realizing approximate joint distribution adaptation. The experimental results showed that the average classification accuracy of this method was 88.33% compared with 58.23% of the traditional general classifier. It improves the generalization ability of emotion brain-computer interface in practical application, and provides a new method for aBCIs to be used in practice.
Regarding to the channel selection problem during the classification of electroencephalogram (EEG) signals, we proposed a novel method, Relief-SBS, in this paper. Firstly, the proposed method performed EEG channel selection by combining the principles of Relief and sequential backward selection (SBS) algorithms. And then correlation coefficient was used for classification of EEG signals. The selected channels that achieved optimal classification accuracy were considered as optimal channels. The data recorded from motor imagery task experiments were analyzed, and the results showed that the channels selected with our proposed method achieved excellent classification accuracy, and also outperformed other feature selection methods. In addition, the distribution of the optimal channels was proved to be consistent with the neurophysiological knowledge. This demonstrates the effectiveness of our method. It can be well concluded that our proposed method, Relief-SBS, provides a new way for channel selection.
Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups ofⅣ_ⅢandⅣ_Ⅰ. The experimental results proved that the method proposed in this paper was feasible.