west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "视网膜病变" 578 results
  • Accurate assessment and control of the progression of diabetic retinopathy

    The prevalence of diabetes mellitus in adults of China has reached 12.8%. Diabetic retinopathy (DR) accounts for approximately 1/4-1/3 of the diabetic population. Several millions of people are estimated suffering the advanced stage of DR, including severe non-proliferative DR (NPDR), proliferative DR (PDR) and diabetic macular edema (DME), which seriously threat to the patients’ vision. On the basis of systematic prevention and control of diabetes and its complications, prevention of the moderate and high-risk NPDR from progressing to the advanced stage is the final efforts to avoid diabetic blindness. The implementation of the DR severity scale is helpful to assess the severity, risk factors for its progression, treatment efficacy and prognosis. In the eyes with vision-threatening DR, early application of biotherapy of anti-vascular endothelial growth factor can improve DR with regression of retinal neovascularization, but whether it is possible to induce capillary re-canalization in the non-perfusion area needs more investigation. Laser photocoagulation remains the mainstay treatment for non-center-involved DME and PDR.

    Release date:2021-02-05 03:22 Export PDF Favorites Scan
  • The characteristics of color motion perception in early diabetic retinopathy

    Purpose To observe the color motion perception of patients with diabetic retinopathy (DR) in very early stage and find a good way to diagnose early DR in time. Methods The motion perceptions of patients with early DR and normal subjects were tested by using equiluminant moving chromatic grating and moving luminance grating generated on VGA monitor in a PC compatible computer and the results were compared with those of electroretinogram(ERG),oscillatory potentials(OPs) and color perception. Results When the two gratings were of equal spatial frequency and equal time frequency,the normal subjects judged that chromatic grating moved faster than luminance grating.Very signifincant differences were detected between blue/yellow grating and black/white grating while the luminance contrast of was 80% and the velocity was 20.2 mm/s or 14.3mm/s(Plt;0.01).The abnormal ratio of color motion perception(69.2%)was higher than that of color vision(43.6%) and ERG OPs(48.9%) when the luminance contrast of black/white grating was 80% and the velocity was 20.2mm/s. Conclusion The test of color motion perception provides new method for diagnosing early DR. (Chin J Ocul Fundus Dis,1998,14:135-138)

    Release date:2016-09-02 06:11 Export PDF Favorites Scan
  • Effect of high glucose on the expression of activating transcription factor 4 in cultured retinal Müller glia cells

    Objective To observe the effect of high glucose on the expression of activating transcription factor 4 (ATF4) in cultured retinal Muuml;ller glia cells. Methods The retinal tissue of Sprague-Dawley (SD) rats was collected, and Muuml;ller cells were isolated and cultured. The glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) of Muuml;ller cells were identified by streptavidin-biotin-peroxidase complex. Cultured rat Muuml;ller cells were divided into control group (5.5 mmol/L glucose), group A (20 mmol/L glucose), group B (30 mmol/L glucose) and group C (40 mmol/L glucose). ATF4 protein expressions in Muuml;ller cells of four groups were measured by Western blot four days after cultured. Results GFAP and GS expressed in more than 95% of Muuml;ller cells. Over 95% of Muuml;ller cells of group A, B and C were positive for GFAP and GS. Western blots indicated that ATF4 protein in group A, B and C increased obviously compared with the control group (q=0.293, 0.754,0.484;P<0.05). Conclusion High glucose can increase the expression of ATF4 protein and cause endoplasmic reticulum stress in retinal Muuml;ller glia cells in vitro.

    Release date:2016-09-02 05:26 Export PDF Favorites Scan
  • 以纤维蛋白沉积为主的中心性浆液性脉络膜视网膜病变一例

    Release date:2016-09-02 05:22 Export PDF Favorites Scan
  • Müller细胞生理功能及其在糖尿病视网膜病变中的变化

    Müller细胞接触并包裹视网膜神经元细胞体和突触, 对视网膜神经元的功能及代谢起到支持作用; 对维护视网膜细胞外环境的稳定, 如离子、水平衡和血视网膜屏障(BRB)等具有重要调控作用; 可释放神经胶质递质和刺激性神经物质, 通过对神经递质的再吸收循环, 为视网膜神经元提供神经递质前体进而影响神经突触的活性。此外, Müller细胞对病理刺激能够产生反应。该反应一方面具有视网膜神经元保护作用, 如分泌神经营养因子、吸收降解兴奋性毒素、分泌抗氧化剂等, 另一方面也可引起视网膜神经元谷氨酸盐代谢紊乱和离子平衡紊乱, 导致视网膜水肿和神经元变性损伤。Müller细胞对糖尿病视网膜病变(DR)的发生发展具有重要影响。DR可引起Müller细胞增生, 除造成谷氨酸盐代谢紊乱外, 还会引起Müller细胞大量分泌炎症介质和血管内皮生长因子等破坏BRB。深入研究Müller细胞, 对探讨DR的发病及防治具有重要意义。针对Müller细胞靶向转染的腺病毒载体研制成功, 利用两亲肽携带蛋白或抗体直接转染细胞达到抑制DR的效果, 这些方法为早期防治DR提供了新的途径。

    Release date: Export PDF Favorites Scan
  • Multidisciplinary approach in the management of diabetic retinopathy

    Diabetic retinopathy (DR) is one of the microvascular complications of diabetes mellitus (DM). Like other macrovascular complications of DM, the development and progression of DR is influenced by a variety of systemic and local factors. It is essential to understand the importance of multidisciplinary collaboration. Systemic risk fators such as hyperglycemia, hypertension, dyslipidemia and diabetic nephropathy should be treated before effective DR management can be implemented. Through multidisciplinary collaboration, we can prevent the development of DR, slow the progression of DR, and improve the safety of perioperative care. Thereby enhancing the level of prevention and control of DM complications, including DR.

    Release date:2017-05-15 12:38 Export PDF Favorites Scan
  • Research progress of different types of stem cells in the application of diabetic retinopathy

    Diabetic retinopathy is a serious complication of diabetes and is the leading cause of blindness in people with diabetes. At present, there are many views on the pathogenesis of diabetic retinopathy, including the changes of retinal microenvironment caused by high glucose, the formation of advanced glycation end products, oxidative stress injury, inflammatory reaction and angiogenesis factor. These mechanisms produce a common pathway that leads to retinal degeneration and microvascular injury in the retina. In recent years, cell regeneration therapy plays an increasingly important role in the process of repairing diseases. Different types of stem cells have neurological and vascular protection for the retina, but the focus of the target is different. It has been reported that stem cells can regulate the retinal microenvironment and protect the retinal nerve cells by paracrine production, and can also reduce immune damage through potential immunoregulation, and can also differentiate into damaged cells by regenerative function. Combined with the above characteristics, stem cells show the potential for the repair of diabetic retinopathy, this stem cell-based regenerative therapy for clinical application provides a pre-based evident. However, in the process of stem cell transplantation, homogeneity of stem cells, cell delivery, effective homing and transplantation to damaged tissue is still a problem of cell therapy.

    Release date:2018-07-23 04:02 Export PDF Favorites Scan
  • Effects on the expression of glutamic acid and gamma-aminobutyric acid in the retina of diabetic rats with insulin late intensive treatment

    ObjectiveTo observe the expression of glutamate (Glu) andγ-aminobutyric acid (GABA) in the retina of diabetic rats which were intervened later by insulin intensive therapy, and to investigate the mechanism of metabolic memory of hyperglycemia which induced the retina neuropathy in diabetic rats. Methods60 Brown Norway rats were randomly divided into normal control (NC) group, diabetes mellitus (DM) group (6 weeks at DM1, 12 weeks at DM2) and metabolic memory (MM) group, 15 rats in each group. Diabetes was induced by intraperitoneal injection of streptozocin. After 6 weeks, MM group was treated with insulin intensive therapy for 6 weeks. DM1 group was sacrificed at the end of 6 weeks and other groups were sacrificed at the end of 12 weeks. High performance liquid chromatography was used to detect the amount of Glu and GABA in the rat retina. Real-time polymerase chain reaction was applied to quantify the mRNA expressions of Glutamate decarboxylase (GAD). TdT mediated dUTP nick ending labelling was used to detect cell apoptosis. ResultsThe concentration of Glu (t=6.963), GABA (t=4.385) and the ratio of Glu/GABA (t=4.163) in MM group were significantly higher than DM1 group, but the concentration of Glu (t=3.411) and GABA (t=3.709) were significantly lower than DM2 group (P < 0.05). And there was no significant difference in the ratio of Glu/GABA between MM and DM2 groups (t=1.199, P > 0.05). The level of expressions of GAD mRNA in MM group was significantly lower than DM1 group (t=3.496, P < 0.05), but higher than DM2 group (t=8.613, P < 0.05). The number of nerve cells apoptosis in MM group was significantly higher than DM1 group (t=2.584, P < 0.05), but lower than DM2 group (t=3.531, P < 0.05). ConclusionsIntensive therapy later by insulin can partially reduce the content of Glu and GABA and the rate of nerve cells apoptosis, which cannot return to normal levels, and has no effect on the rise in the ratio of Glu/GABA caused by the hyperglycemia. The disorders of Glu and GABA may participate in the metabolic memory of hyperglycemia.

    Release date: Export PDF Favorites Scan
  • The expression and role of miR-195 in diabetic retinopathy

    ObjectiveTo investigate the expression of miR-195 and the underlying molecular mechanisms of miR-195 regulating HMGB1 in diabetic retinopathy (DR). MethodsExtract 5 ml venous blood from DR patients, diabetes mellitus (DM) patients and normal subjects, then extract and perificate plasma total RNA. MicroRNA array and real time polymerase chain reaction (RT-PCR) was used to screen out miRNAs which were expressed with significant differences in the serum of patients with DR. Bioinformatics was employed to predict the miR-195 related to high mobility group box 1 (HMGB1) regulation. Next, miR-195 was down-regulated or up-regulated in umbilical vein endothelial cells through transfection of miR-195 inhibitor and miR-29b mimics respectively.Then we analyzed expression of HMGB1 mRNA and protein by RT-PCR and Western blot. ResultsMicroRNA array results showed the expression of miR-195 in DR group is decreased by 8.34 times and 11.47 times compared with DM group and the normal group. RT-PCR verification results conforms to the microRNA array results. Compared with the DM group (F=0.034, t=8.057) and the normal group (F=0.370, t=9.522), the expression of miR-195 in DR group were significantly reduced, the differences were statistically significant (P < 0.05). RT-PCR showed that the expression of HMGB1 mRNA was significantly decreased in up-regulation group, compared with blank (F=0.023, t=11.287) and negative control group (F=0.365, t=7.471), the difference was statistically significant (P < 0.05). The expression of HMGB1 mRNA was significantly increased in down-regulation group, compared with blank (F=0.053, t=10.871) and negative control group (F=0.492, t=6.883), the difference was statistically significant (P < 0.05). Western blot showed that the expression of HMGB1 protein was significantly decreased in up-regulation group, compared with blank (F=0.021, t=8.820) and negative control group (F=0.039, t=7.401), the difference was statistically significant (P < 0.05); and significantly increased in down-regulation group, compared with blank (F=0.186, t=10.092) and negative control group (F=0.017, t=12.923), the difference was statistically significant (P < 0.05). ConclusionMiR-195 can inhibit the expression of HMGB1, reduce the inflammation and angiogenesis, thereby delaying or inhibiting the occurrence and development of DR.

    Release date: Export PDF Favorites Scan
  • The functional and morphological changes of macular after panretinal photocoagulation in the patients with diabetic retinopathy

    Objective To observe the functional and morphological changes of macular after panretinal photocoagulation(PRP)in the patients with diabetic retinopathy(DR).Methods A total of 57 eyes of 34 patients with DR undergoing PRP were enrolled in this prospective and self-reflection study. Comparatively analyze the changes of the best visual acuity(BCVA), optical coherence tomography (OCT) and multi-focal electroretinography (mfERG) before PRP,20 days, 3 months and more than 9 months after PRP. Statistical analyses were performed by wilcoxon, chisquare, Dunnett-t, LSD-t tests and spearman related analyses. The changes of macular function and foveal retinal thickness before and after PRP were comparatively analyzed.Results BCVA of all patients reduced at 9 months after PRP(P=0.022).The amplitude density of mfERG P1 of ring 2 decreased at 20 days after PRP(P=0.039),then recovered at 3 months and decreased again at 9 months(P=0.014).The amplitude density of mfERG P1 of ring 3-5 decreased at 20 days,3 months and more than 9 months after PRP(20 days: ring 3: P=0.000,ring 4: P=0.001, ring 5: P=0.000;3 months: ring 3:P=0.000, ring 4: P=0.006, ring 5: P=0.001; more than 9 months: ring 3: P=0.000,ring 4: P=0.000, ring 5: P=0.000). The amplitude density of mfERG P1 of ring 1 was significantly lower at 9 months after PRP(P=0.050). The foveal retinal thickness increased at 20 days after PRP(P=0.007), then recovered at 3 months or later. Cystoid macular degeneration was found in 6 eyes(10.5%) at 20 days after PRP.Conclusions After the treatment of PRP, there were some extend reduction of the macular function, a transient increase on foveal retinal thickness. Combined mfERG and OCT can be a comprehensively and objectively assessment of macular function and morphology.

    Release date:2016-09-02 05:40 Export PDF Favorites Scan
58 pages Previous 1 2 3 ... 58 Next

Format

Content