Objective To evaluate the efficacy and safety of dexamethasone intravitreal implant (Ozurdex) in the treatment of macular edema (ME) secondary to retinal vein occlusion (RVO). Methods Thirty-nine patients (39 eyes) with ME secondary to RVO were enrolles in this study. Of the patients, 27 were male and 12 were female. The mean age was (41.9±16.3) years. The mean course of disease was (5.0±5.3) months. The best corrected visual acuity (BCVA), intraocular pressure and optical coherence tomography (OCT) were performed. BCVA was measured by Early Treatment Diabetic Retinopathy Study charts. Central macular thickness (CMT) was measured by OCT. The mean BCVA was (13.4±15.3) letters. The mean intraocular pressure (IOP) was (14.1±2.8) mmHg (1 mmHg=0.133 kPa). The mean CMT was (876.1±437.9) μm. Of the 39 eyes, 33 were central RVO, 6 were branch RVO. Patients were categorized into ischemic (18 eyes)/non-ischemic (21 eyes) groups and previous treatment (22 eyes)/treatment naïve (17 eyes) groups. All eyes underwent intravitreal 0.7 mg Ozurdex injections. BCVA, IOP and CMT were assessed at 1, 2, 3, 6, 9, 12 months after injection. Three months after injection, intravitreal injections of Ozurdex, triamcinolone acetonide or ranibizumab could be considered for patients with ME recurrence or poor treatment effects. Change of BCVA, IOP and CMT were evaluated with paired t test. The presence of ocular and systemic adverse events were assessed. Results BCVA, IOP significantly increased and CMT significantly decreased at 1 month after injection compared to baseline in all groups (t=3.70, 3.69, 4.32, 3.08, 4.25, 6.09, 6.25, 4.02, 5.49, 8.18, 6.54, 5.73; P<0.05). Two months after injection, change of BCVA, IOP and CMT was most significant (t=4.93, 6.80, 6.71, 5.53, 4.97, 5.89, 5.13, 7.68, 7.31, 8.67, 8.31, 5.82; P<0.05). Twelve months after injection, there was no statistical difference regarding BCVA of ischemic RVO group and previous treatment group, compared to baseline (t=1.86, 0.67; P>0.05); BCVA of non-ischemic RVO group and treatment naïve group significantly increased compared to baseline (t=2.27, 2.30; P<0.05); there was no statistical difference regarding IOP in all groups (t=0.30, 0.13, 0.64, 1.53; P>0.05);however, CMT significantly decreased in all groups (t=4.60, 3.26, 3.00, 4.87; P<0.05). Twenty-seven eyes (69.2%) experiences ME recurrence (4.5±1.5) months after injection. Most common side-effect was secondary glaucoma. 41.0% eyes had IOP more than 25 mmHg, most of which were lowered to normal range with use of topical IOP lowering drugs. Four eyes (10.3%) presented with significant cataract progression and needed surgical treatment, all were central RVO eyes. No serious ocular or systemic adverse events such as vitreous hemorrhage, retinal detachment or endophthalmitis were noted. Conclusions Intravitreal injection of Ozurdex for patients with ME secondary to RVO is effective in increasing BCVA and lowering CMT in the first few months. Significant treatment effect could be seen at 1 month after injection and was most significant at 2 months after injection. The long-term vision of eyes in non-ischemic RVO group and treatment naïve group are better. 69.2% eyes experience ME recurrence at 4 months after injection. Short term adverse events were mostly secondary glaucoma and long term adverse events are mostly cataract progression.
ObjectiveTo observe the expression of inflammatory cytokines in diabetic rats received posterior sub-Tenon capsule injection of triamcinolone acetonide (TA) and pan-retinal photocoagulation. MethodsA total of 48 Brown Norway rats received intraperitoneal injection of streptozotocin to establish the diabetic model. Diabetic rats were randomly divided into experimental group (20 rats), control group (20 rats) and blank group (8 rats). 50 μl TA or saline was injected into the posterior sub-Tenon capsule immediately after the photocoagulation in the experimental group and the control group, respectively. The blank group received no treatment. The mRNA and protein expression level of retinal vascular endothelial growth factor (VEGF), interleukin-6 (IL-6) and tumor necrosis fator-α (TNF-α) were measured by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) at 1, 3, 7 days after laser photocoagulation. ResultsThe mRNA and protein expression of VEGF, IL-6, TNF-α of the experimental group and control group were significantly higher than the blank group, the difference was statistically significant (P < 0.05). The mRNA and protein expression of VEGF, IL-6 and TNF-α of the experimental group were significantly lower than that of the control group. On day 1 after laser photocoagulation, the mRNA expression of VEGF was not statistically significant in the experimental group and control group (P > 0.05), the mRNA and protein expression of VEGF, IL-6, TNF-α of the two groups were statistically significant in the remaining observing time (P < 0.05). ConclusionPosterior sub-Tenon capsule injection of TA can effectively reduce retinal photocoagulation induced VEGF, IL-6, TNF-α expression.
ObjectiveTo compare the one year efficacy of intravitreal injection with ranibizumb for macular edema (ME) secondary to ischemic and non-ischemic central retinal vein occlusion (CRVO).MethodsA total of 88 patients (88 eyes) with ME secondary to CRVO were enrolled in this retrospective study. The best corrected visual acuity (BCVA) was detected by the Early Treatment Diabetic Retinopathy Study Chart. The optical coherence tomography was used to measure the foveal retinal thickness (CRT) and macular edema volume. The patients were divided into non-ischemic group and ischemic group, 44 eyes of 44 patients in each group. There was no significant differences in age (t=0.650, P=0.517) and gender (χ2=0.436, P=0.509) between the two groups. Compared with the ischemic group, the CRT was significantly decreased in the non-ischemic group (t=−2.291, P=0.024), and the edema volume in the macular area was significantly reduced (t=−2.342, P=0.022). All eyes were treated with continuous intravitreal injection of ranibizumab three times, and repeated injections were performed as needed. The patients without obvious ME regression after treatment were combined with triamcinolone acetonide injection. The patients with peripheral retinal non-perfusion area were combined with peripheral retinal laser photocoagulation. The follow-up was 1 year. The number of injections was counted. The changes of BCVA, CRT and edema volume in the macular area were compared between the two groups.ResultsDuring the 1-year follow-up period, 88 eyes were injected 1 to 10 times, with the mean of 4.51±2.33. The number of injections in the ischemic group and non-ischemic group were 4.55±1.59 and 4.48±2.91, respectively. There was no significant difference in the average number of injections between the two groups (t=0.136, P=0.892). The number of acetonide injections and laser treatment in the ischemic group was significantly higher than that in the non-ischemic group (t=3.729, 9.512; P<0.001). At the last follow-up, compared with the ischemic group, the BCVA was increased (t=8.128), the CRT was decreased (t=−7.029) and the edema volume in the macular area was decreased (t=−7.213) in the non-ischemic group (P<0.001).ConclusionCompared with ME secondary to ischemic CRVO, intravitreal injection of ranibizumab for ME secondary to non-ischemic CRVO has the better outcome of vision improvement and edema regression as well as less frequent of acetonide injections and laser treatment.
ObjectiveTo observe the short-term intraocular pressure changes of the affected eye after the implantation of dexamethasone vitreous implant (Ozurdex), and indirectly understand the tightness of the scleral perforation of the 22G implant device.MethodsThis is a prospective cohort design clinical observational study. From January 2018 to January 2020, 90 eyes (90 patients) who underwent vitreous Ozurdex implantation in the Department of Ophthalmology of Beijing Hospital were included in the study. There were 52 males (52 eyes), and 38 females (38 eyes); they were 14-79 years old. Forty-three eyes (43 patients) had retinal vein occlusion with macular edema, 29 eyes (29 patients) had uveitis with or without macular edema, 18 eyes (18 patients) had diabetic macular edema. All eyes underwent standard scleral tunnel vitreous cavity implantation Ozurdex treatment. The intraocular pressure was measured with a non-contact pneumatic tonometer 10 min before implantation (baseline) and 10, 30 min and 2, 24 h after implantation. The difference were compared between the intraocular pressure at different time points after implantation and the baseline. Wilcoxon signed rank test was used to compare intraocular pressure between baseline and different time points after implantation.ResultsThe average baseline intraocular pressure of the affected eye was 14.85 [interquartile range (IQR): 11.60, 17.63] mmHg (1 mmHg=0.133 kPa). The average intraocular pressure at 10, 30 and 2, 24 hours after implantation were 11.90 (IQR: 8.95, 16.30), 13.75 (IQR: 9.95, 16.80), 13.60 (IQR: 10.95, 17.20), and 14.65 (IQR: 12.20, 17.50) mmHg. Compared with the baseline intraocular pressure, the intraocular pressure decreased at 10 and 30 minutes after implantation, the difference was statistically significant (P<0.001, P=0.002); the intraocular pressure difference was not statistically significant at 2, 24 h after implantation (P=0.140, 0.280).ConclusionsThere is a statistically significant difference in intraocular pressure reduction compared with the baseline in 10 and 30 minutes after vitreous implantation of Ozurdex, and there is no statistically significant difference between 2, 24 hours. This suggests that the 22G scleral puncture port of the preinstalled implant device cannot be completely closed immediately, and short-term intraocular pressure monitoring after implantation should be appropriately strengthened.
At present, intravitreal injections of anti-VEGF agents is the main method for the treatment of macular edema secondary to retinal vein occlusion (RVO), which can significantly inhibit neovascularization, release macular edema and improve the vision of patients. However, VEGF is a survival factor of vascular endothelial cells, whether it can lead to the progress of retinal ischemia and it has an effect on retinal capillaries deserves our clinical attention. Most scholars currently think that the anti-VEGF agents will not aggravate the occlusion of retinal capillaries in the treatment of macular edema secondary to RVO from the aspects of the changes of perifoveal capillary arcade, the quantification of foveal avascular zone area, retinal nonperfusion area and retinal vascular density of the superficial and deep capillary plexus In addition, the changes of these indicators may be related to the number of times patients need treatment, visual prognosis and so on. In the future, with the gradual popularization of OCT angiography and the prolongation of the number and time of anti VEGF drug treatment, we look forward to the study of larger samples and longer follow-up time to further analyze the influence of the retinal capillary after anti-VEGF therapy in patients with macular edema associated with RVO.
ObjectiveTo observe the short-term efficacy of posterior sub-tenon injection of triamcinolone acetonide (PSTA) in the treatment of macular edema due to ischemic retinal vein occlusions (RVO). MethodsA retrospective clinical study. A total of 53 eyes of 53 patients with RVO macular edema diagnosed by fundus color photography, fundus fluorescein angiography and optical coherence tomography (OCT) were included in the study. The best corrected visual acuity (BCVA) was detected by the international standard visual acuity chart, and the results were converted to the logarithm of the minimum angle of resolution (logMAR) visual acuity. The central macular thickness (CMT) was measured by OCT. Among 53 eyes, there were 27 eyes with ischemic RVO macular edema (ischemic group) and 26 eyes with non-ischemic RVO macular edema (non-ischemic group). The mean logMAR BCVA was 0.82±0.37, mean CMT was (662.1±216.7) μm in ischemic group. The mean logMAR BCVA was 0.41±0.23, mean CMT was (548.0±161.9) μm. The differences of logMAR BCVA and CMT between the two groups were both statistically significant (t=4.745, 2.258; P<0.05). All eyes were treated with a single sub-Tenon injection of 0.4 ml triamcinolone acetonide suspension (100 mg/ml).The mean logMAR BCVA, CMT before and 1, 3 months after the treatment between the two groups were observed and compared. ResultsOn 1 and 3 months after treatment, the mean logMAR BCVA in the non-ischemic group (0.32±0.25 and 0.27±0.29) were improved compared with ischemic group (0.76±0.37 and 0.41±0.79), the difference was statistically significant (t=5.052, 5.240; P<0.05). The mean logMAR BCVA before and after treatment had no statistically significant difference in ischemic group (F=0.516, P>0.05), but had a statistically significant difference in non-ischemic group (F=7.685, P<0.05). On 1 and 3 months after treatment, the mean CMT in the ischemic group were (534.7±223.4), (470.8±234.7) μm, which were lower (127.4±28.28), (191.4±34.55) μm before treatment. In the non-ischemic group, the average CMT was (426.2±188.8), (371.3±200.6) μm, which were lower (103.1±33.1), (164.9±49.6) μm. There were statistically significant differences in the mean CMT between the ischemic group and the non-ischemic group (F=17.040, 10.360; P<0.05). In non-ischemic group, CMT had a bigger reduction compared to the the ischemic group (t=2.056, 2.103; P<0.05). The difference of CMT decrease value between two groups was not statistically significant (t=0.560, 0.441; P>0.05). On 1 month after the treatment, there were 3 and 5 eyes had a higher intraocular pressure than 21 mmHg (1 mmHg=0.133 kPa) in ischemic and non-ischemic group, respectively; but all of them returned to normal after drug treatment. There were no drugs and ocular injection related complications. ConclusionPSTA of ischemic RVO macular edema can lower the CMT in the short term, but can't significant improve the visual acuity.
ObjectiveTo investigate the effects of intravitreous injection of conbercept for macular edema secondary to retina1vein occlusion(RVO) during 6 months period. MethodsA retrospective clinical study. 34 patients (34 eyes) were included in this study,who were diagnosed with macular edema due to retinal vein occlusion by ophthalmologic examination, fundus photography, optical coherence tomography (OCT), fundus fluorescein angiography and other methods. The best corrected visual acuity (BCVA) was examined using the international standard visual acuity chart, and the results were converted to the logMAR visual acuity. The average logMAR BCVA was 0.90±0.68, and the mean macular central retinal thickness (CMT) was (672.27±227.51) μm before treatment. All subjects received intravitreal injection of 0.5 mg conbercept (0.05 ml) at the first visit. Injections were repeated based on the visual acuity changes and the OCT findings. 34 eyes received 69 times of injection, the average number of injections was 2.03±1.03. BCVA, OCT were examined before and after treatment using the same method. BCVA and CMT changes, drugs and treatments associated cardiac and cerebral vascular accident, intraocular pressure elevation, retinal tears, retinal detachment, endophthalmitis and other complications after treatment were observed. Linear correlation analysis was used to analyze the correlation between prognosis BCVA and baseline BCVA, correlation between prognosis BCVA and baseline CMT, and also correlation between BCVA and CMT at different time points before and after treatment. ResultsAt 1 week and 1, 2,3, 6 months after treatment, the average logMAR BCVA was 0.65±0.61, 0.56±0.61, 0.46±0.55, 0.56±0.71, 0.44±0.48 respectively. During 1, 2, 3, 6 months after treatment, the mean logMAR BCVA were improved with statistically significant difference (Z=34.029, 47.294, 41.338, 43.603;P < 0.05), while 1 week after treatment showed no obvious improvement (Z=21.941,P > 0.05). At 1 week and 1, 2, 3, 6 months after treatment, the average CMT was (285.89±96.69), (256.65±143.39), (278.68±156.92), (290.11±188.17), (217.15±48.04) μm respectively. At 1 week and 1,2,3,6 months after treatment, the mean CMT were all decreased with statistically significant difference (Z=68.500, 98.735, 93.235, 91.132, 109.162; P < 0.05). There was a positive correlation between the prognosis visual acuity and preoperative visual acuity (r=0.682,P < 0.05). However,there was no correlation between the prognosis vision and the degree of macular edema before treatment (r=0.078,P > 0.05). Before and 3, 6 months after treatment, BCVA was negatively correlated with CMT (r=0.491, 0.416, 0.386; P < 0.05), while there was no correlation in other time points (r=0.145, 0.217, 0.177; P > 0.05). Systemic adverse reactions and persistent intraocular pressure elevation, iatrogenic cataract, retinal detachment, retinal tear, endophthalmitis and ocular complications were never found in the follow-up period. ConclusionIntravitreal conbercept is a safe and effective approach for RVO,which can significantly improve visual acuity and reduce CMT.