Objective To compare the effects of olfactory ensheathing cell (OEC)-containing and pre-degenerated peripheral nerve (PN) transplantation on the axonal regeneration of axotomized retinal ganglion cells (RGC) in adult rats. Methods Twenty-four Sprague-Dawley rats were randomly divided into 4 groups with 6 rats in each group. A segment of the normal (group A) or 10mu;l-OEC-injected (group B) autogenetic sciatic nerve was sutured onto the ocular stump of the left transected optic nerve (ON). In another 2 groups, the removed sciatic nerve was cultured (group C) or co-cultured with OEC (group D) in vitro for 5 days before transplantation. All animals were executed 4 weeks after transplantation, and the number of Fluoro-goldlabeled RGC in each group was counted. Results The averages of regenerating RGC in group B (1481plusmn;268), C (1235plusmn;266) and D (1464plusmn;285) were significantly higher than that in group A (799plusmn;109; P=0.0002, 0.0010 and 0.0003, respectively). No significant difference was found among group B, C and D (P=0.3644, 0.9167 and 0.4344). Conclusion OEC can promote the axonal regeneration of axotomized RGC in fresh PN graft, which doesnprime;t differ much from the effect of the pre-degenerated PN graft. No additive effect of OEC and the pre-degenerated PN graft can be detected. (Chin J Ocul Fundus Dis, 2007, 23: 130-132)
Purpose To investigate the characteristics of intraocular growth of mice embryonic stem cells (ESC) in nude mice. Methods The undifferentiated murine ESC in vitro were transplanted into the eyes of nude mice.Mophological and immunohistochemical examinations were implemented. Results Two to three days after transplantation,yellowish-white granules and masses were seen inside the anterior chamber and vitreous cavity and enlarged gradually.Morphological examination showed that there were undifferentiated cells and differentiated cells in anterior chamber and vitreous cavity.The morphology and alignment of some differentiated cells were similar to those of the retina of nude mice.The cells were highly positive in NSE staining. Conclusion The transplanted ESC could grow in the eyes of nude mice and differentiate into neurons and retina-like structure. (Chin J Ocul Fundus Dis,2000,16:213-284)
Objective To investigate the feasibility of imaging of bone marrow mesenchymal stem cells (BMMSCs) labeled with superparamagnetic iron oxide(SPIO) transplanted into coronary artery in vivo using magnetic resonance imaging (MRI), and the redistribution of the cells into other organs. Methods BMMSCs were isolated, cultured from bone marrow of Chinese mini swine, and double labeled with SPIO and CMDiI(Cell TrackerTM C-7001). The labeled cells were injected into left anterior descending coronary artery through a catheter. The injected cells were detected by using MRI at 1 week,3weeks after transplantation. And different organs were harvested and evaluated the redistribution of transplanted cells through pathology. Results The SPIO labeled BMMSCs injected into coronary artery could be detected through MRI and confirmed by pathology and maintained more than 3 weeks. The SPIO labeled cells could be clearly imaged as signal void lesions in the related artery. The pathology showed that the injected cells could be distributed into the area of related artery, and the cells injected into coronary artery could be found in the lung, spleen, kidney, but scarcely in the liver, the structures of these organs remained normal. Conclusion The SPIO labeled BMMSCs injected into coronary artery can be detected by using MRI, the transplanted cells can be redistributed into the non-targeted organs.
Objective To study the growth characteristics of umbil ical cord MSCs (UCMSCs) in vitro and its effect on the nerve regeneration after spinal cord injury (SCI). Methods UCMSCs isolated from pregnant rats umbil ical cord were cultured and purified in vitro. Sixty female Wistar rats weighing (300 ± 10) g were randomized into three groups (n=20per group). UCMSCs group (group A) in which UCMSCs suspension injection was conducted; DMEM control group (groupB) in which 10% DMEM injection was conducted; sham group (group C) in which the animal received laminectomy only.Establ ish acute SCI model (T10) by Impactor model-II device in group A and group B. The recovery of the lower extremity was observed using BBB locomotor scoring system, neurofilament 200 (NF-200) immunofluorescence staining was performed to detect the neural regeneration, and then the corticospinal tract (CST) was observed using the biotinylated dextran amine (BDA) tracing. Results Cultured UCMSCs were spindle-shaped fibrocyte-l ike adherent growth, swirl ing or parallelly. The USMSCs expressed CD29, but not CD31, CD45, and HLA-DR. The BBB score was higher in group A than group B 4, 5, and 6 weeks after operation, and there was a significant difference between two groups (P lt; 0.05). The BBB scores at different time points were significantly lower in groups A and B than that in group C (P lt; 0.05). UCMSCs was proved to survive and assemble around the injured place by frozen section of the cords 6 weeks after injury. NF-200 positive response area in groups A, B, and C was (11 943 ± 856), (7 986 ± 627), and (13 117 ± 945) pixels, respectively, suggesting there was a significant difference between groups A, C and group B (P lt; 0.05), and no significant difference was evident between group A and group C (P gt; 0.05). BDA anterograde tracing 10 weeks after operation demonstrated that more regenerated nerve fibers went through injured area in group A, but just quite few nerve fibers in group B went through the injuried cavity. The ratios of regenerative axons amount to T5 axons in group A and group B were smaller than that of group C (P lt; 0.05). Conclusion UCMSCs can prol iferate rapidly in vitro, survive and differentiate to neurons after being grafted into injured spinal cord. The transplantation of UCMSCs is effective in promoting functional recovery and axonal regeneration after SCI.
Objective To introduce the basic research and cl inical appl ication of stem cells transplantation for treating diabetic foot. Methods The recent original articles about the stem cells transplantation for treating diabetic foot were extensively reviewed. Results Transplanted different stem cells in diabetic foot could enhanced ulceration heal ing in certain conditions, increase neovascularization and avoid amputation. Conclusion Stem cells transplantation for treating diabeticfoot may be a future approach.
Objective To review the status and appl ication prospect in repair of spinal cord injury by stem cells. Methods The related articles in recent years were extensively reviewed, the biological characteristics of stem cells, the experimental and cl inical studies on repair of spinal cord injury by stem cells, the mechanism of the therapy and the problem were discussed and analyzed. Results The foundational and cl inical study indicated that the great advance was made in repair of spinal cord injury, the stem cells could immigrate in the spinal cord, and differentiate into neuron and secrete neurotrophic factors. So it could promote the repair effects. Conclusion Repair of spinal cord injury by stem cells is an effective therapystrategy, but many problems remain to be resolved.
Objective To investigate the effect of bone marrow mesenchymal stem cells (BMSCs) transplantation on the motor function recovery, the expression of vascular endothel ial growth factor (VEGF) gene, and angiogenesis after spinal cord injury (SCI) in rats, and to explore the treatment mechanism of BMSCs in SCI. Methods BMSCs were isolated and cultured from the marrow of 5 Wistar rats (4 weeks old) and the 3rd-4th passage cells were prepared for the experiment. Atotal of 87 adult female Wistar rats (weighing 220-250 g) were randomly divided into 3 groups: sham-operated group (group A, n=21), DMEM group (group B, n=33), BMSCs group (group C, n=33). A laminectomy was only performed at T8-10 levels in group A. The SCI models were establ ished by modified Nystrom’s compression method in groups B and C, and BMSCs and DMEM were injected in groups B and C respectively at 30 minutes after SCI. Basso-Beattie-Bresnahan (BBB) score was used for the motor function recovery at 3, 7, 14, and 28 days, RT-PCR for the VEGF mRNA at 1, 3, and 5 days, and immunohistochemical staining for angiogenesis at 3, 7, 14, and 28 days. Results In groups B and C, the hindl imb locomotor function was improved at different degrees with time, showing significant difference in BBB score between groups B, C and group A (P lt; 0.05). At 28 days, the BBB score in group C was significantly higher than that in group B (P lt; 0.05) and there was no significant difference between groups B and C (P gt; 0.05) at 3, 7, and 14 days after transplantation. The numbers of microvessels in the ventral horns of gray matter around SCI in groups B and C were significantly lower than that in group C (P lt; 0.05) at 3 days, but there was no significant difference at 7, 14, and 28 days after transplantation (P gt; 0.05). There was no significant difference in the number of microvessels between group C and group B (P gt; 0.05) at 3 and 7 days, but the number of microvessels in group C was significantly higher than that in group B (P lt; 0.05) at 14 and 28 days after transplantation. However, there was no significant difference in the number of microvessels in the white matter around SCI in 3 groups at different time points after transplantation (P gt; 0.05). The RT-PCR results showed that VEGF mRNA expressed at a low level in group A. Compared with group A, the expression level of VEGF mRNA in groups B and C increased at 1 day and reached the peak at 3 days, then decreased at 5 days after transplantation; and the expression of VEGF mRNA was significantly higher in groups B and C than in group A (P lt; 0.05),and in group C than in group B (P lt; 0.05) at 1, 3, and 5 days. Conclusion BMSCs may promote the motor function recoveryby up-regulating VEGF mRNA expression and increasing angiogenesis in the spinal cord after SCI in rats.
The capacity for self-regeneration of the adult heart is very limited, conventional therapies cannot solve the loss of cardiomyocytes in the infarcted heart leads to continuous ventricular remodeling. Cell transplantation therapy is emerging as a novel approach for myocardial repair over conventional therapies. Various types of cell transplantation have improved cardiac function and angiogenesis in animal models and clinical settings. The safety and feasibility of some clinical trials have been initiated. In this review, we summarize the advantages and limitations of different cell types proposed for cell transplantation in myocardial infarction and give an overview of the clinical trials using this novel therapeutic approach in patients with myocardial infarction.
Objective To observe the effect of BMSCs on the cardiac function in diabetes mellitus (DM) rats through injecting BMSCs into the ventricular wall of the diabetic rats and investigate its mechanism. Methods BMSCs isolated from male SD rats (3-4 months old) were cultured in vitro, and the cells at passage 5 underwent DAPI label ing. Thirty clean grade SD inbred strain male rats weighing about 250 g were randomized into the normal control group (group A), the DM group (group B), and the cell transplantation group (group C). The rats in groups B and C received high fat forage for 4 weeks and the intraperitoneal injection of 30 mg/kg streptozotocin to made the experimental model of type II DM. PBS and DAPI-labeledpassage 5 BMSCs (1 × 105/μL, 160 μL) were injected into the ventricular wall of the rats in groups B and C, respectively. After feeding those rats with high fat forage for another 8 weeks, the apoptosis of myocardial cells was detected by TUNEL, the cardiac function was evaluated with multi-channel physiology recorder, the myocardium APPL1 protein expression was detected by Western blot and immunohistochemistry test, and the NO content was detected by nitrate reductase method. Group C underwent all those tests 16 weeks after taking basic forage. Results In group A, the apoptosis rate was 6.14% ± 0.02%, the AAPL1 level was 2.79 ± 0.32, left ventricular -dP/dt (LV-dP/dt) was (613.27 ± 125.36) mm Hg/s (1 mm Hg=0.133 kPa), the left ventricular end-diastol ic pressure (LVEDP) was (10.06 ± 3.24) mm Hg, and the NO content was (91.54 ± 6.15) nmol/mL. In group B, the apoptosis rate was 45.71% ± 0.04%, the AAPL1 level 1.08 ± 0.24 decreased significantly when compared with group A, the LVdP/ dt was (437.58 ± 117.58) mm Hg/s, the LVEDP was (17.89 ± 2.35) mm Hg, and the NO content was (38.91±8.67) nmol/mL. In group C, the apoptosis rate was 27.43% ± 0.03%, the APPL1 expression level was 2.03 ± 0.22, the LV -dP/dt was (559.38 ± 97.37) mm Hg/ s, the LVEDP was (12.55 ± 2.87) mm Hg, and the NO content was (138.79 ± 7.23) nmol/ mL. For the above mentioned parameters, there was significant difference between group A and group B (P lt; 0.05), and between group B and group C (P lt; 0.05). Conclusion BMSCs transplantation can improve the cardiac function of diabetic rats. Its possible mechanismmay be related to the activation of APPL1 signaling pathway and the increase of NO content.
【Abstract】 Objective To review the progress in the treatment of spinal cord injury (SCI) by graft of neuralstem cells (NSCs) or bone marrow mesenchymal stem cells (BMSCs) as well as immune characteristics of two stemcells. Methods Different kinds of documents were widely collected, and then immunologic characteristics of NSCs andBMSCs were summarized. The therapy of SCI by stem cell transplantation was reviewed. Additionally, some problems intreatment were analyzed. Results Experimental study showed that graft of NSCs and BMSCs can promote the functionalrecovery of the injured spinal cord in animals. Due to immunologic properties of two stem cells, rejection reaction oftransplantation could produce a harmful effect on SCI treatment. Conclusion Transplantation of NSCs or BMSCs might bean effective measure for SCI treatment, but immunologic rejection reaction must be considered.