west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Convolutional neural network" 18 results
  • Establishment and test of intelligent classification method of thoracolumbar fractures based on machine vision

    Objective To develop a deep learning system for CT images to assist in the diagnosis of thoracolumbar fractures and analyze the feasibility of its clinical application. Methods Collected from West China Hospital of Sichuan University from January 2019 to March 2020, a total of 1256 CT images of thoracolumbar fractures were annotated with a unified standard through the Imaging LabelImg system. All CT images were classified according to the AO Spine thoracolumbar spine injury classification. The deep learning system in diagnosing ABC fracture types was optimized using 1039 CT images for training and validation, of which 1004 were used as the training set and 35 as the validation set; the rest 217 CT images were used as the test set to compare the deep learning system with the clinician’s diagnosis. The deep learning system in subtyping A was optimized using 581 CT images for training and validation, of which 556 were used as the training set and 25 as the validation set; the rest 104 CT images were used as the test set to compare the deep learning system with the clinician’s diagnosis. Results The accuracy and Kappa coefficient of the deep learning system in diagnosing ABC fracture types were 89.4% and 0.849 (P<0.001), respectively. The accuracy and Kappa coefficient of subtyping A were 87.5% and 0.817 (P<0.001), respectively. Conclusions The classification accuracy of the deep learning system for thoracolumbar fractures is high. This approach can be used to assist in the intelligent diagnosis of CT images of thoracolumbar fractures and improve the current manual and complex diagnostic process.

    Release date: Export PDF Favorites Scan
  • Evaluation of brain injury caused by stick type blunt instruments based on convolutional neural network and finite element method

    The finite element method is a new method to study the mechanism of brain injury caused by blunt instruments. But it is not easy to be applied because of its technology barrier of time-consuming and strong professionalism. In this study, a rapid and quantitative evaluation method was investigated to analyze the craniocerebral injury induced by blunt sticks based on convolutional neural network and finite element method. The velocity curve of stick struck and the maximum principal strain of brain tissue (cerebrum, corpus callosum, cerebellum and brainstem) from the finite element simulation were used as the input and output parameters of the convolutional neural network The convolutional neural network was trained and optimized by using the 10-fold cross-validation method. The Mean Absolute Error (MAE), Mean Square Error (MSE), and Goodness of Fit (R2) of the finally selected convolutional neural network model for the prediction of the maximum principal strain of the cerebrum were 0.084, 0.014, and 0.92, respectively. The predicted results of the maximum principal strain of the corpus callosum were 0.062, 0.007, 0.90, respectively. The predicted results of the maximum principal strain of the cerebellum and brainstem were 0.075, 0.011, and 0.94, respectively. These results show that the research and development of the deep convolutional neural network can quickly and accurately assess the local brain injury caused by the sticks blow, and have important application value for understanding the quantitative evaluation and the brain injury caused by the sticks struck. At the same time, this technology improves the computational efficiency and can provide a basis reference for transforming the current acceleration-based brain injury research into a focus on local brain injury research.

    Release date: Export PDF Favorites Scan
  • Automatic detection model of hypertrophic cardiomyopathy based on deep convolutional neural network

    The diagnosis of hypertrophic cardiomyopathy (HCM) is of great significance for the early risk classification of sudden cardiac death and the screening of family genetic diseases. This research proposed a HCM automatic detection method based on convolution neural network (CNN) model, using single-lead electrocardiogram (ECG) signal as the research object. Firstly, the R-wave peak locations of single-lead ECG signal were determined, followed by the ECG signal segmentation and resample in units of heart beats, then a CNN model was built to automatically extract the deep features in the ECG signal and perform automatic classification and HCM detection. The experimental data is derived from 108 ECG records extracted from three public databases provided by PhysioNet, the database established in this research consists of 14,459 heartbeats, and each heartbeat contains 128 sampling points. The results revealed that the optimized CNN model could effectively detect HCM, the accuracy, sensitivity and specificity were 95.98%, 98.03% and 95.79% respectively. In this research, the deep learning method was introduced for the analysis of single-lead ECG of HCM patients, which could not only overcome the technical limitations of conventional detection methods based on multi-lead ECG, but also has important application value for assisting doctor in fast and convenient large-scale HCM preliminary screening.

    Release date: Export PDF Favorites Scan
  • Multimodal high-grade glioma semantic segmentation network with multi-scale and multi-attention fusion mechanism

    Glioma is a primary brain tumor with high incidence rate. High-grade gliomas (HGG) are those with the highest degree of malignancy and the lowest degree of survival. Surgical resection and postoperative adjuvant chemoradiotherapy are often used in clinical treatment, so accurate segmentation of tumor-related areas is of great significance for the treatment of patients. In order to improve the segmentation accuracy of HGG, this paper proposes a multi-modal glioma semantic segmentation network with multi-scale feature extraction and multi-attention fusion mechanism. The main contributions are, (1) Multi-scale residual structures were used to extract features from multi-modal gliomas magnetic resonance imaging (MRI); (2) Two types of attention modules were used for features aggregating in channel and spatial; (3) In order to improve the segmentation performance of the whole network, the branch classifier was constructed using ensemble learning strategy to adjust and correct the classification results of the backbone classifier. The experimental results showed that the Dice coefficient values of the proposed segmentation method in this article were 0.909 7, 0.877 3 and 0.839 6 for whole tumor, tumor core and enhanced tumor respectively, and the segmentation results had good boundary continuity in the three-dimensional direction. Therefore, the proposed semantic segmentation network has good segmentation performance for high-grade gliomas lesions.

    Release date: Export PDF Favorites Scan
  • Research on inversion method of intravascular blood flow velocity based on convolutional neural network

    Blood velocity inversion based on magnetoelectric effect is helpful for the development of daily monitoring of vascular stenosis, but the accuracy of blood velocity inversion and imaging resolution still need to be improved. Therefore, a convolutional neural network (CNN) based inversion imaging method for intravascular blood flow velocity was proposed in this paper. Firstly, unsupervised learning CNN is constructed to extract weight matrix representation information to preprocess voltage data. Then the preprocessing results are input to supervised learning CNN, and the blood flow velocity value is output by nonlinear mapping. Finally, angiographic images are obtained. In this paper, the validity of the proposed method is verified by constructing data set. The results show that the correlation coefficients of blood velocity inversion in vessel location and stenosis test are 0.884 4 and 0.972 1, respectively. The above research shows that the proposed method can effectively reduce the information loss during the inversion process and improve the inversion accuracy and imaging resolution, which is expected to assist clinical diagnosis.

    Release date: Export PDF Favorites Scan
  • White blood segmentation based on dual path and atrous spatial pyramid pooling

    The count and recognition of white blood cells in blood smear images play an important role in the diagnosis of blood diseases including leukemia. Traditional manual test results are easily disturbed by many factors. It is necessary to develop an automatic leukocyte analysis system to provide doctors with auxiliary diagnosis, and blood leukocyte segmentation is the basis of automatic analysis. In this paper, we improved the U-Net model and proposed a segmentation algorithm of leukocyte image based on dual path and atrous spatial pyramid pooling. Firstly, the dual path network was introduced into the feature encoder to extract multi-scale leukocyte features, and the atrous spatial pyramid pooling was used to enhance the feature extraction ability of the network. Then the feature decoder composed of convolution and deconvolution was used to restore the segmented target to the original image size to realize the pixel level segmentation of blood leukocytes. Finally, qualitative and quantitative experiments were carried out on three leukocyte data sets to verify the effectiveness of the algorithm. The results showed that compared with other representative algorithms, the proposed blood leukocyte segmentation algorithm had better segmentation results, and the mIoU value could reach more than 0.97. It is hoped that the method could be conducive to the automatic auxiliary diagnosis of blood diseases in the future.

    Release date: Export PDF Favorites Scan
  • Medical image super-resolution reconstruction via multi-scale information distillation network under multi-scale geometric transform domain

    High resolution (HR) magnetic resonance images (MRI) or computed tomography (CT) images can provide clearer anatomical details of human body, which facilitates early diagnosis of the diseases. However, due to the imaging system, imaging environment and human factors, it is difficult to obtain clear high-resolution images. In this paper, we proposed a novel medical image super resolution (SR) reconstruction method via multi-scale information distillation (MSID) network in the non-subsampled shearlet transform (NSST) domain, namely NSST-MSID network. We first proposed a MSID network that mainly consisted of a series of stacked MSID blocks to fully exploit features from images and effectively restore the low resolution (LR) images to HR images. In addition, most previous methods predict the HR images in the spatial domain, producing over-smoothed outputs while losing texture details. Thus, we viewed the medical image SR task as the prediction of NSST coefficients, which make further MSID network keep richer structure details than that in spatial domain. Finally, the experimental results on our constructed medical image datasets demonstrated that the proposed method was capable of obtaining better peak signal to noise ratio (PSNR), structural similarity (SSIM) and root mean square error (RMSE) values and keeping global topological structure and local texture detail better than other outstanding methods, which achieves good medical image reconstruction effect.

    Release date: Export PDF Favorites Scan
  • Multi-task motor imagery electroencephalogram classification based on adaptive time-frequency common spatial pattern combined with convolutional neural network

    The effective classification of multi-task motor imagery electroencephalogram (EEG) is helpful to achieve accurate multi-dimensional human-computer interaction, and the high frequency domain specificity between subjects can improve the classification accuracy and robustness. Therefore, this paper proposed a multi-task EEG signal classification method based on adaptive time-frequency common spatial pattern (CSP) combined with convolutional neural network (CNN). The characteristics of subjects' personalized rhythm were extracted by adaptive spectrum awareness, and the spatial characteristics were calculated by using the one-versus-rest CSP, and then the composite time-domain characteristics were characterized to construct the spatial-temporal frequency multi-level fusion features. Finally, the CNN was used to perform high-precision and high-robust four-task classification. The algorithm in this paper was verified by the self-test dataset containing 10 subjects (33 ± 3 years old, inexperienced) and the dataset of the 4th 2018 Brain-Computer Interface Competition (BCI competition Ⅳ-2a). The average accuracy of the proposed algorithm for the four-task classification reached 93.96% and 84.04%, respectively. Compared with other advanced algorithms, the average classification accuracy of the proposed algorithm was significantly improved, and the accuracy range error between subjects was significantly reduced in the public dataset. The results show that the proposed algorithm has good performance in multi-task classification, and can effectively improve the classification accuracy and robustness.

    Release date: Export PDF Favorites Scan
  • Single-channel electroencephalogram signal used for sleep state recognition based on one-dimensional width kernel convolutional neural networks and long-short-term memory networks

    Aiming at the problem that the unbalanced distribution of data in sleep electroencephalogram(EEG) signals and poor comfort in the process of polysomnography information collection will reduce the model's classification ability, this paper proposed a sleep state recognition method using single-channel EEG signals (WKCNN-LSTM) based on one-dimensional width kernel convolutional neural networks(WKCNN) and long-short-term memory networks (LSTM). Firstly, the wavelet denoising and synthetic minority over-sampling technique-Tomek link (SMOTE-Tomek) algorithm were used to preprocess the original sleep EEG signals. Secondly, one-dimensional sleep EEG signals were used as the input of the model, and WKCNN was used to extract frequency-domain features and suppress high-frequency noise. Then, the LSTM layer was used to learn the time-domain features. Finally, normalized exponential function was used on the full connection layer to realize sleep state. The experimental results showed that the classification accuracy of the one-dimensional WKCNN-LSTM model was 91.80% in this paper, which was better than that of similar studies in recent years, and the model had good generalization ability. This study improved classification accuracy of single-channel sleep EEG signals that can be easily utilized in portable sleep monitoring devices.

    Release date: Export PDF Favorites Scan
  • Fetal electrocardiogram signal extraction and analysis method combining fast independent component analysis algorithm and convolutional neural network

    Fetal electrocardiogram (ECG) signals provide important clinical information for early diagnosis and intervention of fetal abnormalities. In this paper, we propose a new method for fetal ECG signal extraction and analysis. Firstly, an improved fast independent component analysis method and singular value decomposition algorithm are combined to extract high-quality fetal ECG signals and solve the waveform missing problem. Secondly, a novel convolutional neural network model is applied to identify the QRS complex waves of fetal ECG signals and effectively solve the waveform overlap problem. Finally, high quality extraction of fetal ECG signals and intelligent recognition of fetal QRS complex waves are achieved. The method proposed in this paper was validated with the data from the PhysioNet computing in cardiology challenge 2013 database of the Complex Physiological Signals Research Resource Network. The results show that the average sensitivity and positive prediction values of the extraction algorithm are 98.21% and 99.52%, respectively, and the average sensitivity and positive prediction values of the QRS complex waves recognition algorithm are 94.14% and 95.80%, respectively, which are better than those of other research results. In conclusion, the algorithm and model proposed in this paper have some practical significance and may provide a theoretical basis for clinical medical decision making in the future.

    Release date: Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content