Objective To investigate the feasibil ity of preparing the porous extracellular matrix (ECM) by use of some chemicals and enzymes to decellularize the porcine carotid artery. Methods The porcine carotid artery was procured, and warm ischemia time was less than 30 minunts. The porcine carotid artery was decellularized with 1% sodium dodecyl sulfate (SDS) for 60 hours to prepare common ECM; then common ECM was treated with 0.25% trypsin (for 6 hours) and 0.3 U/ mL collagenase (for 24 hours) to prepare porous ECM. The common ECM and porous ECM were stained with HE,Masson’s trichrome, and Orcein to evaluate the histological features. Then the mechanical property, cytotoxicity, and pore size of ECMs were determined. After 4 weeks of subcutaneous implantation in dogs, the histological examination was used for the study. Results Histological observation confirmed that 2 kinds of ECMs were decellularized completely and more porous structure was observed in porous ECM. Scanning electron microscope showed the pores in porous ECM were greater and the length of shorter axis in porous ECM ranged from 5 to 30 μm, the length of longer axis from 40 to 100 μm. The porosity of porous ECM (99.25%) was greater than that of common ECM (91.50%). The burst pressure of porous ECM decreased when compared with common ECM, showing significant difference [(0.154 3 ± 0.012 7) MPa vs [0.305 2 ± 0.015 7) MPa, P lt; 0.05]. There was no significant difference in suture retention strength between 2 kinds of ECMs (P gt; 0.05). The cytotoxicity test showed no obvious cytotoxicity in 2 kinds of ECMs. In vivo implantation test showed that the deeper host cells infiltration and more neo-microvessels in porous ECM were observed than in common ECM. Conclusion SDS and some enzymes can be used to prepare porous ECM as the scaffold for tissue engineered blood vessels.
Objective To develop a new small-caliber vascular xenograft and evaluate the feasibility of xenogenic artery for coronary artery bypass grafting. Methods Canine carotid arteries were decellularized by detergent and enzymatic extraction. All decellularized xenografts were randomly divided into two groups. Heparin-linked group (n=24): grafts were then covalently linked with heparin. Non-heparin-linked group (n=24): as control. Xenografts in two groups were implanted in rabbits' left and right carotid artery respectively as bypass grafts. Graft patency was checked by ultrasonography after 3 weeks, 3 and 6 months. Grafts were harvested after 3 and 6 months. Microscopic observation and immunohistochemical staining were performed. Results All the cells were removed while the extracellular matrix were well preserved observed. Heparin was successfully linked to the grafts through their whole thickness. There was no obstruction at both sides after implantation of the grafts, while less thrombus was found in the decellularized heparin-linked grafts than in the other side. Smooth muscle cells densely populated the graft wall and endothelial cells covered the lumen at 3 months after implantation. Conclusion Canine common carotid artery treated by detergent and enzymatic extraction and heparin linkage may be a new small-caliber vascular xenograft for coronary artery bypass grafting.
ObjectiveTo explore an optimized protocol of decellularization to fabricate an ideal scaffold derived from porcine skeletal muscle acellular matrix. MethodsSerial-step protocol of homogenating-milling-detergent method was used to fabricate decellularized porcine muscle tissue (DPMT) derived from native porcine skeletal muscle tissue from adult pig waist. Histological method was used to assess the effects of decellularization and degreasing. Sirius red staining was used to analyze collagen components. Scanning electron microscopy, BCA assay, and PicoGreen assay were used to evaluate the ultrastructure, total protein content, and DNA content in DPMT. The adipose derived stem cells (ADSCs), NIH3T3 cells, and human umbilical vein endothelial cells (HUVECs) were cultured in extraction liquor of DPMT in different concentrations for 1, 3, and 5 days, then the relative growth rate was calculated with cell counting kit 8 to assess the toxicity in vitro. Live/dead cell staining was used to evaluate the cytocompatibility by seeding HUVECs on the surface of DPMT and co-cultured in vitro for 3 days. For in vivo test, DPMT was subcutaneously implanted at dorsal site of male specific-pathogen free Sprague Dawley rats and harvested after 3, 7, 14, and 28 days. Gross obersvation was done and transverse diameter of remained DPMT in vivo was determined. HE staining and immunohistochemical staining of CD31 were used to assess inflammatory response and new capillary rings formation. ResultsDecellularization of the porcine skeletal muscle tissue by homogenating-milling-detergent serial steps protocol was effective, time-saving, and simple, which could be finished within only 1 day. The decellularizarion and degreasing effect of DPMT was complete. The main component of DPMT was collagen type I and type IV. The DNA content in DPMT was (15.902±1.392) ng/mg dry weight, the total protein content was 68.94% of DPMT dry weight, which was significantly less than those of fresh skeletal muscle tissue[(140.727±10.422) ng/mg and 93.14%] (P<0.05). The microstructure of DPMT was homogeneous and porous. The result of cytocompatibility revealed that the cytotoxicity of DPMT was 0-1 grade, and HUVECs could stably grow on DPMT. In vivo study revealed DPMT could almost maintain its structural integrity at 14 days and it degraded completely at 28 days after implantation. The inflammatory response peaked at 3 days after implantation, and reduced obviously at 7 days. Difference was significant in the number of inflammatory cells between 2 time points (P<0.05). Neovascularization was observed at 7 days after implantation and the number of new vessels increased at 14 days, showing significant difference between at 7 and 14 days (P<0.05). ConclusionThe homogenating-milling-detergent serial-steps protocol is effective, time-saving, and reproducible. The DPMT reveals to be cell and lipid free, with highly preserved protein component. DPMT has good biocompatibility both in vitro and in vivo and may also have potential in promoting neovascularization.
Objective To produce a decellularized cartilage matrix (DCM) and investigate its possibil ity to be used as a scaffold for tissue engineering. Methods Fresh bovine articular cartilage from knee joints was sl iced, freeze-dried and freeze-ground into fine powder, and then was treated sequentially with Trypsin, Triton X-100 and hypotonic solution for decellularization. The decellularized matrix was freeze-dried for shaping and cross-l inked by UV radiation. Histological, immunohistological, SEM, porosity assays and biomechanical assays were used to characterize the DCM. BMSCs were isolated from rabbit bone marrow aspirate and cultured in DCM extraction medium of different concentration (100%, 10% and 1%) for 0, 24, 48 and 72 hours, respectively, to detect the release rate of the lactate dehydrogenase (LDH). The DMEM medium (5% FBS) served as the control. Biocompatibil ity was evaluated using BMSCs (1 × 107/mL) cultured with DCM. Results The DCM showed white spongy appearances, and histological analysis showed that the material was constructed by cartilage particles without any cells or cell fragments left in the matrix. Immunohistology staining and alcian blue staining showed that DCM retained the collagen and glycosaminoglycan components of cartilaginous matrix. SEM scanning showed that DCM had a porous spongy-l ike structure with the aperture ranging 30-150 μm .The porosity assay showed that the average porosity was 89.37% and the average aperture was 90.8 μm. The mechanical assay showed that there was no difference for the compress module before and after the decellularization process, which was (17.91 ± 0.98) MPa and (15.12 ± 0.77) MPa, respectively (P gt; 0.05), but were both statistical different from normal articular cartilage [(26.30 ± 1.98) MPa, P lt; 0.05]. The LDH release rate in the DCM extraction medium of different concentration was not significantly different from that in the normal DMEM medium (P gt; 0.05). The cell adhesion test showed BMSCs grew well on DCM without any signs of growth inhibition. Conclusion Articular cartilage can be decellularized and fabricated into a scaffold which retains the major components of cartilaginous matrix. DCM has goodbiochemical, biophysical characteristics and good biocompatibil ity with cultured BMSCs and may be used as a novel scaffold for tissue engineering studies.
Objective To study and test novel hybrid valves in vitro and in vivo, and provide basis for clinical use in future. Methods The hybrid valves were fabricated from decellularized porcine aortic valves coated with poly (3-hydroxybutyrate-co-3hydroxyhexanoate, PHBHHx).(1)In the mechanical test in vitro, the uniaxial tensile biomechanics test of the fresh (n=12), uncoated (n=12) and hybrid valve leaflets (n=12) were investigated. (2)In study in vivo, hybrid valves(n=5) implanted in pulmonary position in sheep without cardiopulmonary bypass. Uncoated grafts (n=5) used as control. The specimens of the hybrid or uncoated valve in sheep were explanted and examined by scanning electron microscopy, histology, calcium content and immunofluorescence staining 18 weeks after surgery. Results The mechanical test in vitro revealed that coating with PHBHHx increased maximal tensile strength of hybrid valves compared with the fresh and uncoated state (P<0.05). The results in vivo indicated the hybrid valves maintained original shape and softness. Immunofluorescence staining for CD31 confirmed that the surface of hybrid valve was covered by confluent CD31+ cells.The interstitium of hybrid valve indicated that smooth muscle actin (SMA)+ cells population were similar to native valvular tissue. The calcium content of hybrid valve was significantly lower than that of uncoated valve leaflets (P<0.05). Conclusion Decellularized porcine aortic valves coated with PHBHHx have good biological and biomechanical characteristics. The hybrid valve may provide superior valve replacement with current techniques.
ObjectiveTo explore the possibility of constructing tissue engineered adipose by adipose tissue derived extracellular vesicles (hAT-EV) combined with decellularized adipose tissue (DAT) scaffolds, and to provide a new therapy for soft tissue defects.MethodsThe adipose tissue voluntarily donated by the liposuction patient was divided into two parts, one of them was decellularized and observed by HE and Masson staining and scanning electron microscope (SEM). Immunohistochemical staining and Western blot detection for collagen type Ⅰ and Ⅳ and laminin were also employed. Another one was incubated with exosome-removed complete medium for 48 hours, then centrifuged to collect the medium and to obtain hAT-EV via ultracentrifugation. The morphology of hAT-EV was observed by transmission electron microscopy; the nanoparticle tracking analyzer (NanoSight) was used to analyze the size distribution; Western blot was used to analyse membrane surface protein of hAT-EV. Adipose derived stem cells (ADSCs) were co-cultured with PKH26 fluorescently labeled hAT-EV, confocal fluorescence microscopy was used to observe the uptake of hAT-EV by ADSCs. Oil red O staining was used to evaluate adipogenic differentiation after hAT-EV and ADSCs co-cultured for 15 days. The DAT was scissored and then injected into the bilateral backs of 8 C57 mice (6-week-old). In experimental group, 0.2 mL hAT-EV was injected weekly, and 0.2 mL PBS was injected weekly in control group. After 12 weeks, the mice were sacrificed, and the new fat organisms on both sides were weighed. The amount of new fat was evaluated by HE and peri-lipoprotein immunofluorescence staining to evaluate the ability of hAT-EV to induce adipogenesis in vivo.ResultsAfter acellularization of adipose tissue, HE and Masson staining showed that DAT was mainly composed of loosely arranged collagen with no nucleus; SEM showed that no cells and cell fragments were found in DAT, and thick fibrous collagen bundles could be seen; immunohistochemical staining and Western blot detection showed that collagen type Ⅰ and Ⅳ and laminin were retained in DAT. It was found that hAT-EV exhibited a spherical shape of double-layer envelope, with high expressions of CD63, apoptosis-inducible factor 6 interacting protein antibody, tumor susceptibility gene 101, and the particle size of 97.9% hAT-EV ranged from 32.67 nmto 220.20 nm with a peak at 91.28 nm. Confocal fluorescence microscopy and oil red O staining showed that hAT-EV was absorbed by ADSCs and induced adipogenic differentiation. In vivo experiments showed that the wet weight of fat new organisms in the experimental group was significantly higher than that in the control group (t=2.278, P=0.048). HE staining showed that the structure of lipid droplets in the experimental group was more than that in the control group, and the collagen content in the control group was higher than that in the experimental group. The proportion of new fat in the experimental group was significantly higher than that in the control group ( t=4.648, P=0.017).ConclusionDAT carrying hAT-EV can be used as a new method to induce adipose tissue regeneration and has a potential application prospect in the repair of soft tissue defects.
ObjectiveTo study the feasibility of human adipose-derived stem cells (hADSCs) combined with small intestinal submucosa powder (SISP)/chitosan chloride (CSCl)-β-glycerol phosphate disodium (GP)-hydroxyethyl cellulose (HEC) for adipose tissue engineering. MethodshADSCs were isolated from human breast fat with collagenase type I digestion, and the third passage hADSCs were mixed with SISP/CSCl-GP-HEC at a density of 1×106 cells/mL. Twenty-four healthy female nude mice of 5 weeks old were randomly divided into experimental group (n=12) and control group (n=12), and the mice were subcutaneously injected with 1 mL hADSCs+SISP/CSCl-GP-HEC or SISP/CSCl-GP-HEC respectively at the neck. The degradation rate was evaluated by implant volume measurement at 0, 1, 2, 4, and 8 weeks. Three mice were euthanized at 1, 2, 4, and 8 weeks respectively for general, histological, and immunohistochemical observations. The ability of adipogenesis (Oil O staining), angiopoiesis (CD31), and localized the hADSCs (immunostaining for human Vimentin) were identified. ResultsThe volume of implants of both groups decreased with time, but it was greater in experimental group than the control group, showing significant difference at 8 weeks (t=3.348, P=0.029). The general observation showed that the border of implants was clear with no adhesion at each time point;fat-liked new tissues were observed with capillaries on the surface at 8 weeks in 2 groups. The histological examinations showed that the structure of implants got compact gradually after injection, and SISP gradually degraded with slower degradation speed in experimental group;adipose tissue began to form, and some mature adipose tissue was observed at 8 weeks in the experimental group. The Oil O staining positive area of experimental group was greater than that of the control group at each time point, showing significant difference at 8 weeks (t=3.411, P=0.027). Immunohistochemical staining for Vemintin showed that hADSCs could survive at each time point in the experimental group;angiogenesis was most remarkable at 2 weeks, showing no significant differences in CD31 possitive area between 2 groups (P>0.05), but angiogenesis was more homogeneous in experimental group. ConclusionSISP/CSCl-GP-HEC can use as scaffolds for hADSCs to reconstruct tissue engineered adipose.
ObjectiveTo analyze the effectiveness of a new type of decellularized allogeneic bone in the application of anterior cervical discectomy and fusion (ACDF). MethodsA retrospective analysis was made on the clinical data of 73 patients with single segmental cervical spondylosis treated with ACDF between January 2009 and December 2013. Of 73 cases, autologous iliac bone was used in 22 cases (group A), new decellularized allogeneic bone transplantation (Bio-Gene) in 22 cases (group B), and normal allogeneic bone (Xin Kang Chen) in 24 cases (group C). There was no significant difference in gender, age, type of cervical spondylosis, course of disease, and involved segment among 3 groups (P>0.05). The operation time, intraoperative blood loss, and complications were compared between groups; X-ray films and CT images were taken to observe the bone fusion, and Japanese Orthopaedic Association (JOA) score was used to assess the clinical efficacy. ResultsThe operation time and intraoperative blood loss of group A were significantly more than those of groups B and C (P<0.05), but no significant difference was found between groups B and C (P>0.05). Pain and numbness at donor site occurred in 12 cases, and poor healing in 1 case of group A; red swelling and exudate were observed in 1 case of group B and in 6 cases of group C; and there was significant difference in complications among 3 groups (χ2=18.82, P=0.00). All patients were followed up 6-54 months (mean, 30 months). The graft fusion rate was 100% in groups A and B, and was 95.8% in group C, showing no significant difference (χ2=2.04, P=0.36). The JOA score at 6 months after operation were significantly improved when compared with preoperative score in 3 groups (P<0.05), but no significant difference was found among the 3 groups at preoperation and 6 months after operation (P>0.05). The excellent and good rates of groups A, B, and C were 90.9%, 88.9%, and 87.5% respectively, showing no significant difference (χ2=0.14, P=0.93). ConclusionNew type of decellularized allogeneic bone in ACDF has the advantages of shorter operation time, less blood loss, and better early effectiveness. But whether there is a chronic rejection or delayed rejection needs further studies.
ObjectiveTo prepare the aortic extracellular matrix (ECM) scaffold by using different methods to decellularize porcine ascending aorta and to comprehensively compare the efficiency of decellularization and the damage of ECM, evaluation of biomechanical property and biocompatibil ity. MethodsThirty specimens of fresh porcine ascending aorta were randomly divided into 6 groups (n=5). The porcine ascending aorta was decellularized by 5 different protocols in groups A-E: 0.1% trypsin/0.02% ethylenediamine tetraacetic acid (EDTA)/PBS was used in group A, 1%Triton X-100/0.02% EDTA/ distilled water in group B, 1% sodium deoxycholic acid/distilled water in group C, 0.5% sodium deoxycholic acid/0.5% sodium dodecyl sulfate/distilled water in group D, and 1% deoxycholic acid/distilled water in group E; and the porcine ascending aorta was not decellularized as control in group F. The ascending aorta scaffolds were investigated by gross examination, HE staining, DNA quantitative analysis, immunohistochemistry, and scanning electron microscopy were used to observe the efficiency of decellularization, microstructure of the ECM, the damage of collagen type Ⅰ and elastin, the structure of intimal surface, and biomechanical property. The 90 Sprague Dawley rats were randomly divided into 6 groups (n=15). Each scaffold was implanted in the abdominal muscles of rats respectively to evaluate the immunogenicity and biocompatibil ity. ResultsHE staining and quantitative analysis of DNA showed that the cells were completely removed only in groups A and D. The expression of collagen type Ⅰ in group A was significantly lower than that in the other 5 groups (P < 0.05), and serious damage of the basement membrane and decreased beomechanical property were observed. The maximum stress and tensile strength in group A was significantly lower than those in the other groups (P < 0.05), and elongation at break was significantly higher than that in the other groups (P < 0.05). The destruction of collagen type Ⅰ was significant (P < 0.05) in group D, but the basement membrane was integrity, the biomechanical properties were close to the natural blood vessels (group F) (P > 0.05). Implantation results showed that the scaffold of group D had superior immunogenicity and histocompatibility to the scaffold of the other groups. The inflammatory reaction was gentle and the number of the inflammatory cell infiltration was lower in group D than in other groups (P < 0.05). ConclusionIt is concludes that 0.5% sodium deoxycholic acid/0.5% sodium dodecyl sulfate/distilled water is more suitable for the decellularization of porcine aorta, by which the acquired ECM scaffold has the potential for constructing tissue engineered vessel.
Objective To investigate the effect of canine decellularized tendon slices (DTSs) on tendon-bone healing in repairing rotator cuff injury of rabbit. Methods Canine DTSs were prepared by repetitive freeze/thaw 5 times combined with nuclease processing for 12 hours from the adult Beagles Achilles tendons. Histological observation and cytocompatibility evaluation for the canine DTSs were performed in vitro. Twenty-four mature male New Zealand white rabbits, weighing 2.5-3.0 kg, were randomly selected. U-shaped defect of more than 50% of normal tendon in width and 8 mm in length was made in infraspinatus tendons of unilateral limb as the experimental group; the canine DTSs were used to repair defect, and the insertion of infraspinatus tendon on greater tuberosity of humerus was reconstructed in the experimental group. No treatment was done on the contralateral limb as the control group. At 4, 8, and 12 weeks after operation, the specimens were harvested for histological observation and biomechanical test. Results Histological examination showed that collagen fibers of canine DTSs were well preserved, without residual cells. The cytocompatibility examination showed that fibroblasts attached well to canine DTSs. Biomechanical test showed that the maximum load and stiffness increased significantly with time, and the maximum load and stiffness at 12 weeks were significantly higher than those at 4 and 8 weeks (P lt; 0.05). The maximum load and stiffness of the experimental group at 4 and 8 weeks were significantly lower than those of the control group (P lt; 0.05). The stiffness of the experimental group at 12 weeks was significantly lower than that of the control group (t= — 5.679, P=0.000), but no significant difference was found in the maximum load at 12 weeks between 2 groups (t=0.969, P=0.361). Histological observation showed that the control group displayed a 4-layer structure of the tendon-bone insertion. In the experimental group at 4 weeks, the tendon-bone interface was filled with granulation tissue, and a small amount of Sharpey’s fibers-like connected the tendon to bone; granulation tissue disappeared, and fibroblasts, Sharpey’s fiber, new cartilage, and chondrocytes significantly increased with time; tendon-bone interface became mature, but the tide line was not observed between the unmineralized fibrocartilage and mineralized fibrocartilage. Conclusion Canine DTSs prepared by repetitive freeze/thaw 5 times combined with nuclease processing for 12 hours, can enhance the healing of host tendon-bone and improve the biomechanical characteristics of the rabbit infraspinatus tendon.