Brain-computer interface (BCI) systems based on steady-state visual evoked potential (SSVEP) have become one of the major paradigms in BCI research due to their high signal-to-noise ratio and short training time required by users. Fast and accurate decoding of SSVEP features is a crucial step in SSVEP-BCI research. However, the current researches lack a systematic overview of SSVEP decoding algorithms and analyses of the connections and differences between them, so it is difficult for researchers to choose the optimum algorithm under different situations. To address this problem, this paper focuses on the progress of SSVEP decoding algorithms in recent years and divides them into two categories—trained and non-trained—based on whether training data are needed. This paper also explains the fundamental theories and application scopes of decoding algorithms such as canonical correlation analysis (CCA), task-related component analysis (TRCA) and the extended algorithms, concludes the commonly used strategies for processing decoding algorithms, and discusses the challenges and opportunities in this field in the end.
Speech expression is an important high-level cognitive behavior of human beings. The realization of this behavior is closely related to human brain activity. Both true speech expression and speech imagination can activate part of the same brain area. Therefore, speech imagery becomes a new paradigm of brain-computer interaction. Brain-computer interface (BCI) based on speech imagery has the advantages of spontaneous generation, no training, and friendliness to subjects, so it has attracted the attention of many scholars. However, this interactive technology is not mature in the design of experimental paradigms and the choice of imagination materials, and there are many issues that need to be discussed urgently. Therefore, in response to these problems, this article first expounds the neural mechanism of speech imagery. Then, by reviewing the previous BCI research of speech imagery, the mainstream methods and core technologies of experimental paradigm, imagination materials, data processing and so on are systematically analyzed. Finally, the key problems and main challenges that restrict the development of this type of BCI are discussed. And the future development and application perspective of the speech imaginary BCI system are prospected.
Coding with high-frequency stimuli could alleviate the visual fatigue of users generated by the brain-computer interface (BCI) based on steady-state visual evoked potential (SSVEP). It would improve the comfort and safety of the system and has promising applications. However, most of the current advanced SSVEP decoding algorithms were compared and verified on low-frequency SSVEP datasets, and their recognition performance on high-frequency SSVEPs was still unknown. To address the aforementioned issue, electroencephalogram (EEG) data from 20 subjects were collected utilizing a high-frequency SSVEP paradigm. Then, the state-of-the-art SSVEP algorithms were compared, including 2 canonical correlation analysis algorithms, 3 task-related component analysis algorithms, and 1 task discriminant component analysis algorithm. The results indicated that they all could effectively decode high-frequency SSVEPs. Besides, there were differences in the classification performance and algorithms' speed under different conditions. This paper provides a basis for the selection of algorithms for high-frequency SSVEP-BCI, demonstrating its potential utility in developing user-friendly BCI.