Rapid and accurate identification and effective non-drug intervention are the worldwide challenges in the field of depression. Electroencephalogram (EEG) signals contain rich quantitative markers of depression, but whole-brain EEG signals acquisition process is too complicated to be applied on a large-scale population. Based on the wearable frontal lobe EEG monitoring device developed by the authors’ laboratory, this study discussed the application of wearable EEG signal in depression recognition and intervention. The technical principle of wearable EEG signals monitoring device and the commonly used wearable EEG devices were introduced. Key technologies for wearable EEG signals-based depression recognition and the existing technical limitations were reviewed and discussed. Finally, a closed-loop brain-computer music interface system for personalized depression intervention was proposed, and the technical challenges were further discussed. This review paper may contribute to the transformation of relevant theories and technologies from basic research to application, and further advance the process of depression screening and personalized intervention.
For the increasing number of patients with depression, this paper proposes an artificial intelligence method to effectively identify depression through voice signals, with the aim of improving the efficiency of diagnosis and treatment. Firstly, a pre-training model called wav2vec 2.0 is fine-tuned to encode and contextualize the speech, thereby obtaining high-quality voice features. This model is applied to the publicly available dataset - the distress analysis interview corpus-wizard of OZ (DAIC-WOZ). The results demonstrate a precision rate of 93.96%, a recall rate of 94.87%, and an F1 score of 94.41% for the binary classification task of depression recognition, resulting in an overall classification accuracy of 96.48%. For the four-class classification task evaluating the severity of depression, the precision rates are all above 92.59%, the recall rates are all above 92.89%, the F1 scores are all above 93.12%, and the overall classification accuracy is 94.80%. The research findings indicate that the proposed method effectively enhances classification accuracy in scenarios with limited data, exhibiting strong performance in depression identification and severity evaluation. In the future, this method has the potential to serve as a valuable supportive tool for depression diagnosis.