west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Endothelial cell" 49 results
  • EFFECT OF SURFACE PROPERTY OF DIFFERENT POLYETHER-ESTER COPOLYMERS ON GROWTH OF SMOOTH MUSCLE CELLS AND ENDOTHELIAL CELLS

    Objective To investigate the effect of surface propertyof different polyether-ester block copolymers[poly(ethylene glycol-terephthalate)/poly(butylene terephthalate), PEGT/PBT] on the growth of smooth muscle cells (SMCs) and endothelial cells(ECs). Methods Three kinds of copolymers were synthesized, which were 1000-T20 (group A), 1000PEGT70/PBT30 (group B) and 600PEGT70/PBT30 (group C). The water-uptake and contact angle of three polyether-ester membranes were determined. The canine aorta smooth muscle cells and external jugular vein endothelial cells were primarily harvested, subcultured, and then identified. The proliferation of SMCs and ECs on the different polyether-ester membranes were investigated. Results The water-uptake of three copolymers arranged as the sequence of group C<group A<group B, and contact angle as the sequence of group C>group A>group B, indicating group B being more hydrophilic. However, smooth musclecells andendothelial cells grew poorly on the membrane of group B after low density seeding, but proliferated well on the membranes of group A and group C. Conclusion In contrast with more hydrophilic 1000PEGT70/PBT30, moderately hydrophilic 1000-T20 and 600PEGT70/PBT30 has better compatibility with vascular cells. The above results indicate that the vascular cells can grow well on moderately hydrophilic PEGT/PBT and that PEGT/PBT can be used in vascular tissue engineering. 

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • PREPARATION OF ACELLULARIZED PORCINE HEART VALVE AND SEEDING OF BOVINE AORTIC ENDOTHELIAL CELLS

    OBJECTIVE: To explore the possibility of detergent acellularized porcine heart valve serving as a scaffold for tissue engineering valve. METHODS: The porcine aortic valves were acellularized by use of trypsin-EDTA. Triton X-100, RNase and DNase treatment. Biomechanical characteristics of fresh valves and acellularized valve were tested; also fresh valves, acellularized valve and valves treated with method of bioprothetic treatment were implanted subcutaneously in rats; frequently seeded with bovine aortic endothelial cells(BAECs), and then cultured for 7 days. RESULTS: The acellularization procedure resulted in complete removal of the cellular components while the construction of matrix was maintained. The matrix could be successfully seeded with in vitro expanded BAECs, which formed a continuous monolayer on the surface. There is no significant difference of PGI2 secretion of BAECs between cells seeded onto the acellular leaflets and that onto the wells of 24-wells plate (P gt; 0.05). CONCLUSION: Acellularied porcine aortic valve can be applied as a scaffold to develop tissue engineering heart valve.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • COMPARATIVE STUDY OF MICROVASCULAR ANASTOMOTIC CLIPS AND SUTURE IN SMALL VESSEL ANASTOMOSIS

    OBJECTIVE: To explore an ideal way of small vessel anastomosis for microsurgery. METHODS: Anastomosis of both carotid arteries were performed in 20 rabbits. One side of the arteries were anastomosed with anastomotic clips, the other side of the arteries, as comparison, were anastomosed with suture. The vessels were harvested at first and 14th day after operation and were evaluated using operating microscope, light microscope and electronic microscope. RESULTS: The average anastomotic time for suture was about 15 minutes, while for the clips was 2 to 5 minutes. There were no difference in patency between the two techniques. Endothelialization at the anastomotic sites were both completed 14 days postoperatively. However, for the anastomotic clips, there were no endothelia damage and foreign bodies formation inside the vessels. CONCLUSION: This experiment has confirmed that the anastomotic clip’s procedure provides a very safe and easy way to perform anastomosis and reduce the incidence of thromboses.

    Release date:2016-09-01 10:21 Export PDF Favorites Scan
  • Construction of connective tissue growth factor recombinant interference vector lentiviral particle and its inhibitory effect on endogenous connective tissue growth factor expression in retinal vascular endothelial cells

    ObjectiveTo construct the connective tissue growth factor (CTGF) recombinant interference vector (shRNA) and observe its inhibitory effect on the expression of endogenous CTGF in retinal vascular endothelial cells. Methods The human CTGF shRNA was constructed and the high-titer CTGF shRNA lentivirus particles was acquired via three-plasmid lentivirus packaging system to infect retinal vascular endothelial cells. The optimal multiplicity and onset time of lentivirus infection were identified by tracing down the red florescent protein in interference vector. The cells were classified into three groups: blank control group, infection control group and CTGF knockdown group. The differences in cells migrating ability was observed through Transwell allay. The mRNA and protein expression of CTGF, fibronectin, α-smooth muscle actin (α-SMA) and collagen Ⅰ (Col Ⅰ) were quantified through real-time PCR testing and Western blot system. Data between the three groups were examined via one-way analysis of variance. ResultsThe result showed that an optimal multiplicity of 20 and onset time of 72 hours were the requirements to optimize lentivirus infection. Transwell allay result showed a contrast in the number of migrated cells in the CTGF knockdown group and that in the blank control group and infection control group (F=20.64, P=0.002). Real-time PCR testing showed a contrast in related gene expression (CTGF, fibronectin, α-SMA and Col Ⅰ) in the CTGF knocked-down group and that in the blank control group and infection control group (F=128.83, 124.44, 144.76, 1 374.44; P=0.000, 0.000, 0.000, 0.000). Western blot system showed the statistical significance of the contrasted number of related protein expression (CTGF, fibronectin, α-SMA and Col Ⅰ) in the knockdown group and that in the blank control group (F=22.55, 41.60, 25.73, 161.68; P=0.002, 0.000, 0.001, 0.000). ConclusionThe success in producing CTGF shRNA lentivirus particle suggests that CTGF shRNA lentivirus can effectively knock down CTGF expression.

    Release date:2018-11-16 03:02 Export PDF Favorites Scan
  • A Study on Endothelia Injury in Rat Liver Graft Recipient and the Protective Effect of Prostaglandin E1

    ObjectiveTo study the early functional change of sinusoid endothelial cell after liver transplantation in rat, and to investigate the endothelia protective effect of prostaglandin E1(PGE1). MethodsRat orthotopic liver transplantation model was performed in “twocuff method”, grouped as follows: group A served as normal rat blank control, group B as operative control with normal donor, group C as experimental control with shock donor, and group D as experimental group with shock donor and PGE1 administration (n=8 in each group). Transplanted groups (referring to recipients without specific definition) were sacrificed 6 h after operation for blood taken to detect serum liver enzymes (ALT, LDH), malondialdehyde (MDA), nitric oxide (NO) and plasm endothelin (ET). Liver tissue was resected at the same time for standard pathologic examination. Comparison of the difference the results was made between groups. ResultsCold preservation time and anhepatic phase were similar in each group, (2±0.5) h and (15±3) min respectively. All survived 6 h after transplantation (8/8) in group B and D with a survival rate of 100%, only 5 survived 6 h after transplantation in group C (5/8) with a survival rate of 62.5%. Comparing with group C, blood ALT, LDH, MDA, ET decreased and NO increased significantly in group D (Plt;0.05). Marked histologic structural damage was observed in group C, while normal light microscope appearance was better preserved in group C and D. ConclusionMarked sinusoid endothelia injury occurs during liver transplantation. Concentration of serum NO and plasm ET well presents its function. PGE1 relieves endothelia injury by improving hemodynamics and stabilizing sinusoid endothelial cell plasma membrane.

    Release date:2016-08-28 04:49 Export PDF Favorites Scan
  • Effect of tetramethypyrazine on hypoxia-related factors expression in human umbilical vein endothelial cells

    Objective To observe the effect of tetramethypyrazine (TMP) on the expression of hypoxia-related factors in human umbilical vein endothelial cells (HUVECs). Methods The second to fifth passage cultured HUVECs were divided into five groups: control group, CoCl2induced hypoxic group and 50, 100, 200 mu;mol/L TMP treatment groups. HUVECs in control group were not treated. HUVECs inCoCl2induced hypoxic group were treated with 150 mu;mol/LCoCl2for four hours. HUVECs in 50, 100, 200 mu;mol/L TMP treated groups were pretreated with 150 mu;mol/LCoCl2 for four hours, followed by treatment with 50, 100, 200 mu;mol/L TMP for eight hours. Real-time reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the mRNA levels of prolyl hydroxylase 2 (PHD2), hypoxia-induced factor-1alpha;(HIF-1alpha;) and vascular endothelial growth factor (VEGF). Protein levels of PHD2, HIF-1alpha;, and VEGF were detected using Western blot. Results Compared with the control group, theCoCl2 induced hypoxic group showed decreased mRNA and protein levels of PHD2 (t=3.734, 3.122;P<0.05), while those of HIF-1alpha; and VEGF increased (HIF-1alpha; mRNA:t=4.589,P<0.05; HIF-1alpha; protein:t=3.778,P<0.05. VEGF mRNA:t=3.926,P<0.05; VEGF protein:t=3.257,P<0.05). Compared with theCoCl2 induced hypoxic group, 50, 100, 200 mu;mol/L TMP treated groups showed increased mRNA and protein levels of PHD2 (PHD2 mRNA: t=3.286, 3.617, 3.886;P<0.05. PHD2 protein: t=2.813, 3.026, 3.078; P<0.05); while those of VEGF decreased (VEGF mRNA: 50 mu;mol/L TMP: t=1.696,P>0.05; 100 mu;mol/L TMP:t=2.974,P<0.05; 200 mu;mol/L TMP: t=3.492,P<0.05; VEGF protein: 50 mu;mol/L TMP: t=1.986,P>0.05; 100 mu;mol/L TMP: t=2.976,P<0.05; 200 mu;mol/L TMP:t=3.136,P<0.05); although changes in HIF-1alpha;mRNA levels were not statistically significant (t=1.025, 0.726, -1.386;P>0.05), showed a decrease in HIF-1alpha;protein levels (50 mu;mol/L TMP: t=2.056,P>0.05; 100 mu;mol/L TMP:t=3.058,P<0.05; 200 mu;mol/L TMP:t=3.828,P<0.05). ConclusionIn HUVECs, TMP can upregulate the mRNA and protein expression of PHD2, while down regulating HIF-1alpha; protein expression and VEGF mRNA and protein expression under acute hypoxic conditions.

    Release date:2016-09-02 05:22 Export PDF Favorites Scan
  • Apoptosis of vascular endothelial cells induced by transpupillary thermotherapy

    Objective To observe the vascular endthelial cellular apoptosis induced by transpupillary thermotherapy (TTT). Methods Vascular endothelial cells (VEC) cultured in vitro were treated with TTT, hyperthermia and TTT combined with indocyanine green (ICG) pretreatment. The cellular apoptosis was detected by doublelabelled flow cytometer (annexin Vfluroescein isothiocyanate and propidium iodide) analysis, fluorescent microscopy, nucleolus stainned with DNA dye hoechst 33258, DNA ladder detection and electron microscopy. Results Without significant rising of the temperature, TTT couldnprime;t increase the apoptosis of VEC. Pure hyperthermia and TTT combined with ICG pretreatment could increase apoptosis of VEC significantly, and the effect of the latter method was more obvious. The higher power of TTT was used and the longer duration the cells were cultured, the higher apoptosis rate of VEC was. Conclusion The induction of apoptosis of VEC might play an important role in the mechanism of the occlusion of CNV by TTT, and combining with ICG may obviously enhance the apoptosis rate at the same temperature, which may supply a theoretical basis for promoting the clinical effect of TTT.

    Release date:2016-09-02 05:48 Export PDF Favorites Scan
  • Effects of pyrimidine bundle-binding protein-associated splicing factors on the function of hypoxia-induced human retinal microvascular endothelial cells

    ObjectiveTo observe the effect of pyrimidine bundle-binding protein-associated splicing factors (PSF) on the function of hypoxia-induced human retinal microvascular endothelial cells (hRMECs).MethodsA three-plasmid system was used to construct lentivirus (LV)-PSF. After LV-PSF infected hRMECs in vitro, the infection efficiency was measured by flow cytometry. Real-time quantitative PCR (RT-PCR) was used to detect the expression of PSF mRNA in hRMECs infected with LV-PSF. The experiment was divided into two parts, in vivo and in vitro. In vivo experiments: 20 healthy C57B/L6 mice at the age of postnatal 7 were randomly divided into normal group, oxygen-induced retinopathy (OIR) group, OIR+LV-Vec group, and OIR+LV-PSF group, each group has five mice. Mice in 3 groups were constructed with OIR models except the normal group and the mice in OIR group were not treated. The mice in the OIR + LV-Vec group and the OIR+LV-PSF group were injected with an empty vector (LV-Vec) or LV-PSF in the vitreous cavity, respectively. The effect of LV-PSF on the formation of retinal neovascularization (RNV) was observed then. In vitro experiments: hRMECs were divided into normal group, hypoxia group, vector group, and PSF high expression group. HRMECs in the normal group were cultured in vitro; hRMECs in the hypoxic group were restored to normal culture conditions for 3 h after 3 h of hypoxia stimulation; hRMECs in the vector group and PSF high expression group were infected with LV-Vec and LV-PSF for 48 h, and hRMECs were returned to normal culture conditions for 24 h with hypoxia stimulation for 3 h. The effect of PSF on cell proliferation was observed by MTT colorimetry. Cell scratch test and Transwell migration experiment were used to observe the effect of PSF on cell migration ability under hypoxia stimulation. RT-PCR was used to observe the mRNA expression of HIF-1α, VEGF and PSF in each group of cells.ResultsThe LV-PSF of stably expressing PSF was successfully constructed. The infection efficiency was 97% determined by flow cytometry. The level of PSF mRNA in hRMECs infected with LV-PSF was significantly increased and detected by RT-PCR. In vivo experiments: The RNV area of the mice in the OIR group and the OIR + LV-Vec group was significantly increased compared to the normal group (t=18.31, 43.71), and the RNV area of the mice in the OIR + LV-PSF group was smaller than that in the OIR group (t=11.30) and OIR + The LV-Vec group (t=15.47), and the differences were statistically significant (P<0.05). In vitro experiments: MTT colorimetry results showed that the proliferative capacity of hRMECs in the hypoxic group was significantly enhanced compared with the normal group (t=2.57), and the proliferative capacity of hRMECs in the PSF high expression group was significantly lower than that of the normal, hypoxic, and vector groups (t=5.26, 5.46, 3.73), the differences were statistically significant (P<0.05). The results of cell scratch test showed that the hRMECs could be stimulated by the hypoxia stimulation for 3 hours to restore the normal condition for 24 hours or 48 hours (t=8.35, 13.84; P<0.05). Compared with the vector group, cell migration rate in the PSF-high expression group was not significant (t=10.99, 18.27, 9.75, 8.93, 26.94, 7.01; P<0.05). Transwell experiments showed that the number of cells stained on the microporous membrane was higher in the normal group and the vector groups, while the number of cells stained in the PSF high expression group was significantly reduced (t=9.33, 6.15; P<0.05). The results of RT-PCR showed that the mRNA expression of HIF-1α and VEGF in hRMECs in the hypoxic and vector groups increased significantly compared with the normal group (t=15.23, 21.09; P<0.05), but no change in the mRNA expression of PSF (t=0.12, 2.15; P>0.05); compared with the hypoxia group and the vector group, the HIF-1α and VEGF mRNA expression in hRMECs in the PSF high expression group were significantly decreased (t=10.18, 13.10; P<0.05), but the PSF mRNA expression increased (t=65.00, 85.79; P<0.05).ConclusionPSF can reduce the RNV area in OIR model mice. PSF may inhibit hypoxia-induced proliferation and migration of hRMECs through the HIF-1α/VEGF signaling pathway.

    Release date:2020-03-18 02:34 Export PDF Favorites Scan
  • EXPERIMENT STUDY ON ULTRASHORT WAVE FOR TREATING VASCULAR CRISIS AFTER RAT TAIL REPLANTATION

    Objective To explore the effect and mechanism of ultrashort wave (USW) for prevention and treatment of vascular crisis after rat tail replantation. Methods Eighty 3-month old female Sprague Dawley rats (weighing 232.8-289.6 g) were randomly divided into 5 groups. In each group, based on the caudal vein and the coccyx was retained, the tail was cut off. The tail artery was ligated in group A; the tail artery was anastomosed in groups B, C, D, and E to establish the tail replantation model. After surgery, the rats of group B were given normal management; the rats of group C were immediately given intraperitoneal injection (3.125 mL/kg) of diluted papaverine hydrochloride injection (1 mg/mL); the rats of groups D and E were immediately given the local USW treatment (once a day) at anastomotic site for 5 days at the dosage of 3 files and 50 mA for 20 minutes (group D) and 2 files and 28 mA for 20 minutes (group E). The survival rate of the rat tails was observed for 10 days after the tail replantation. The tail skin temperature difference between proximal and distal anastomosis was measured at pre- and post-operation; the change between postoperative and preoperative temperature difference was calculated. The blood plasma specimens were collected from the inner canthus before operation and from the tip of the tail at 8 hours after operation to measure the content of nitric oxide (NO). Results The survival rates of the rat tails were 0 (0/14), 36.4% (8/22), 57.1% (8/14), 22.2% (4/18), and 75.0% (9/12) in groups A, B, C, D, and E, respectively, showing significant overall differences among 5 groups (χ2=19.935, P=0.001); the survival rate of group E was significantly higher than that of group B at 7 days (P lt; 0.05), but no significant difference was found between the other groups by pairwise comparison (P gt; 0.05). At preoperation, there was no significant difference in tail skin temperature difference among 5 groups (P gt; 0.05); at 8 hours, 5 days, 6 days, and 7 days after operation, significant overall difference was found in the change of the skin temperature difference among groups (P lt; 0.05); pairwise comparison showed significant differences after operation (P lt; 0.05): group B gt; group D at 8 hours, group C gt; group D at 5 days, groups A, B, and C gt; group D at 6 days, groups B and C gt; groups A and E, and group B gt; group D at 7 days; but no significant difference was found between the other groups at the other time points (P gt; 0.05). Preoperative plasma NO content between each group had no significant difference (P gt; 0.05). The overall differences had significance in the NO content at postopoerative 8 hours and in the change of the NO content at pre- and post-operation among groups (P lt; 0.05). Significant differences were found by pairwise comparison (P lt; 0.05): group D gt; groups A, B, and C in the plasma NO content, group D gt; groups A and B in the change of the NO content at pre- and post-operation; but no significant difference was found between the other groups by pairwise comparison (P gt; 0.05). Conclusion Rat tail replantation model in this experiment is feasible. USW therapy can increase the survival rate of replanted rat tails, reduce skin temperature at 7 days, improve blood supply, increase the content of nitric oxide at the early period and prevent vascular crisis.

    Release date:2016-08-31 04:21 Export PDF Favorites Scan
  • Effects of interferon-inducible protein-10 on proliferation, migration and capillary tube formation of retinal vascular endothelial cells

    Objective The observe the effects of interferon-inducible protein-10 (IP-10) on proliferation, migration and capillary tube formation of human retinal vascular endothelial cells (HREC) and human umbilical vein endothelial cells (HUVEC). Methods The chemokine receptor (CXCR3) mRNA of HREC and HUVEC were quantified by reverse transcriptase polymerase chain reaction (RT-PCR). In the presence of the different concentrations of IP-10, the difference in proliferation capacity of HREC and HUVEC were analyzed by cell counting kit-8 (CCK-8) methods. Wound scratch assay and threedimensional in vitro matrigel assay were used for measuring migration and capillary tube formation of HREC and HUVEC, respectively. Results RT-PCR revealed both HREC and HUVEC expressed CXCR3. The proliferation of HREC in the presence of IP-10 was inhibited in a dosagedependent manner (F=6.202,P<0.05), while IP-10 showed no effect on the inhibitory rate of proliferation of HUVEC (F=1.183,P>0.05). Wound scratch assay showed a significant reduction in the migrated distance of HREC and HUVEC under 10 ng/ml or 100 ng/ml IP-10 stimulation (F=25.373, 23.858; P<0.05). There was no effect on the number of intact tubules formed by HREC in the presence of 10 ng/ml or 100 ng/ml IP-10. The number of intact tubules formed by HREC in the presence of 1000 ng/ml IP-10 was remarkably smaller. The difference of number of intact tubules formed by HREC among 10, 100, 1000 ng/ml IP-10 and nonintervention group was statistically significant (F=5.359,P<0.05). Conclusion IP-10 can inhibit the proliferation, migration and capillary tube formation ability of HREC and the migration of HUVEC.

    Release date:2016-09-02 05:18 Export PDF Favorites Scan
5 pages Previous 1 2 3 4 5 Next

Format

Content