ObjectiveTo review the current research and application progress of three-dimentional (3D) printed porous titanium alloy after tumor resection, and provide direction and reference for the follow-up clinical application and basic research of 3D printed porous titanium alloy. MethodsThe related literature on research and application of 3D printed porous titanium alloy after tumor resection in recent years was reviewed from three aspects: performance of simple 3D printed porous titanium alloy, application analysis of simple 3D printed porous titanium alloy after tumor resection, and research progress of anti-tumor 3D printed porous titanium alloy. Results3D printing technology can adjust the pore parameters of porous titanium alloy, so that it has the same biomechanical properties as bone. Appropriate pore parameters are conducive to inducing bone growth, promoting the recovery of skeletal system and related functions, and improving the quality of life of patients after operation. Simple 3D printed porous titanium alloy can more accurately match the bone defect after tumor resection through preoperative personalized design, so that it can closely fit the surgical margin after tumor resection, and improve the accuracy and efficiency of the operation. The early and mid-term follow-up results show that its application reduces the postoperative complications such as implant loosening, subsidence, fracture and so on, and enhances the bone stability. The anti-tumor performance of 3D printed porous titanium alloy mainly includes coating and drug-loading treatment of pure 3D printed porous titanium alloy, and some progress has been made in the basic research stage. ConclusionSimple 3D printed porous titanium alloy is suitable for patients with large and complex bone defects after tumor resection, and the anti-tumor effect of 3D printed porous titanium alloy can be achieved through coating and drug delivery.
ObjectiveTo review antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants, so as to provide reference for subsequent research. MethodsThe related research literature on antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants in recent years was reviewed, and the research progress was summarized based on different kinds of antibacterial substances and osteogenic active substances. ResultsAt present, the antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants includes: ① Combined coating strategy of antibiotics and osteogenic active substances. It is characterized in that antibiotics can be directly released around titanium-based implants, which can improve the bioavailability of drugs and reduce systemic toxicity. ② Combined coating strategy of antimicrobial peptides and osteogenic active substances. The antibacterial peptides have a wide antibacterial spectrum, and bacteria are not easy to produce drug resistance to them. ③ Combined coating strategy of inorganic antibacterial agent and osteogenic active substances. Metal ions or metal nanoparticles antibacterial agents have broad-spectrum antibacterial properties and various antibacterial mechanisms, but their high-dose application usually has cytotoxicity, so they are often combined with substances that osteogenic activity to reduce or eliminate cytotoxicity. In addition, inorganic coatings such as silicon nitride, calcium silicate, and graphene also have good antibacterial and osteogenic properties. ④ Combined coating strategy of metal organic frameworks/osteogenic active substances. The high specific surface area and porosity of metal organic frameworks can effectively package and transport antibacterial substances and bioactive molecules. ⑤ Combined coating strategy of organic substances/osteogenic active substancecs. Quaternary ammonium compounds, polyethylene glycol, N-haloamine, and other organic compounds have good antibacterial properties, and are often combined with hydroxyapatite and other substances that osteogenic activity. ConclusionThe factors that affect the antibacterial and osteogenesis properties of titanium-based implants mainly include the structure and types of antibacterial substances, the structure and types of osteogenesis substances, and the coating process. At present, there is a lack of clinical verification of various strategies for antibacterial/osteogenesis dual-functional surface modification of titanium-based implants. The optimal combination, ratio, dose-effect mechanism, and corresponding coating preparation process of antibacterial substances and bone-active substances are needed to be constantly studied and improved.