Objective To investigate the effect of combined therapy of granulocyte colony stimulating factor (G-CSF) and bone marrow mesenchymal stem cells (BMSCs) carrying hepatocyte growth factor (HGF) gene on the angiogenesis of myocardial infarction (MI) in rats and the mechanisms of the synergistic effect. Methods BMSCs were aspirated from the femur and tibia of 3-week-old Sprague Dawley (SD) male rats. The third generation of BMSCs were harvested and transfectedwith Ad-HGF. The MI models were establ ished in 44 SD male rats (weighing 200-250 g) by l igating the left coronary artery. At 4 weeks after l igation, the shorting fraction (FS) of the left ventricle being below 30% was used as a criteria of model success. The BMSCs (5 × 107/ mL) transfected with Ad-HGF were transplanted into the infarct zone of 12 SD rats, and the expression of HGF protein was detected by Western blot method at 2, 7, and 14 days after transplantation. At 4 weeks, the other 32 SD rats were randomly divided into 4 groups (n=8). The 0.1 mL normal sal ine was injected into the infarct zone in control group; 0.1 mL normal sal ine was injected combined with intraperitoneal injection G-CSF [100 μg/ (kg•d)] for 5 days in G-CSF group; 0.1 mL BMSCs (5 × 107/ mL) transfected with Ad-HGF was injected into the infarct zone in HGF group; 0.1 mL BMSCs (5 × 107/ mL) transfected with Ad-HGF was injected combined with intraperitoneal injection G-CSF [100 μg/ (kg•d)] for 5 days in combined therapy group. At 2 weeks after transplantation, heart function was detected by cardiac ultrasound and hemodynamic analysis, and then myocardial tissue was harvested to analyse the angiogenesis of the infarct zone, and the expression of VEGF protein by immunofluorescence staining. Results The expression of HGF protein in vivo was detected at 2 days and 7 days of BMSCs transfected with Ad-HGF transplantation. There was no significant difference in left ventricular systol ic pressure (LVSP), left ventricular end-diastol ic pressure (LVEDP), dP/dtmax, and FS between G-CSF group and control group (P gt; 0.05). When compared with the control group, LVEDP decreased significantly; LVSP, FS, and dP/dtmax increased significantly (P lt; 0.05) in HGF group and combined therapy group. When compared with HGF group, FS and dP/dtmax increased significantly in combined therapy group (P lt; 0.05). Immunofluorescence staining showed that the vascular endothel ial cells were observed in myocardial infarction border zone. The vascular density and the expression of VEGF protein were significantly higher in combined therapygroup than in other 3 groups (P lt; 0.05). Conclusion The combined therapy of G-CSF and BMSCs carrying HGF gene has a synergistic effect and can enhance infarct zone angiogenesis through inducing the expression of VEGF protein.
Objective To explore the expression and effect of heme oxygenase-1 ( HO-1) in ventilator-induced lung injury. Methods Twenty-four New Zealand rabbits were randomly assigned to three groups, ie. a conventional ventilation + PEEP group( C group) , a ventilator-induced lung injury group( VILI group) , and a VILI + HO-1 inducer hemin group( Hm group) .Western blot and immunohistochemistry assay were used to investigate the expression of HO-1 protein. Blood gas analysis, lung wet /dry ratio, lunghistopathology and lung injury score were used to evaluate lung injury. Results HO-1 protein expression significantly increased in the VILI group compared with the C group. HO-1 was found mainly in alveolar epithelial cells and vascular endothelial cells, as well as in alveolar macrophages and neutrophils. Compared with the VILI group, HO-1 protein and PaO2 /FiO2 increased, while lung wet/dry ratio and lung injury score decreased in the Hmgroup significantly( P lt;0. 05) . Conclusion High HO-1 expression can alleviate lung injury from large tidal volume ventilation, implying its protective role in lung pathogenesis.
Ojective To establish a rat model of hyperoxia induced acute lung injury. Methods Eighty healthy male SD rats were randomly divided into an air group and a hyperoxia group ( ≥95% O2 ) .Each group was further divided into 12 h, 24 h, 36 h, 48 h, 60 h subgroups. Arterial blood gas was monitored. Lung tissue was sampled for evaluation of lung wet to dry ratio, lung index, and pulmonary permeation index. Bronchoalveolar lavage fluid ( BALF) was collected for measurement of lactatedehydrogenase ( LDH) activity and white blood cell count ( WBC) . Results After hyperoxia exposure for 48 ~60 h, lung pathology showed alveolar structure disruption, lung parenchyma wrath bleeding and edema.Lung wet to dry ratio, lung index, pulmonary permeation index, LDH and WBC in BALF all increased significantly, peaked at 48 h and remained at high level at 60 h while PaO2 dropped progressively.Conclusion Exposure to ≥ 95% O2 for 48 ~60 h can successfully establish the rat model of hyperoxia induced acute lung injury.
Objective To investigate the effects of recombinant human erythropoietin ( rHuEPO) on expressions of Bax and Bcl-2 proteins in hyperoxia-induced lung injury of adult rats. Methods Fortyeight healthy male SD adult rats were randomly divided into six groups. The control group ( 0 h) breathed with room air. The rHuEPO intervention group was put into oxygen chamber and breathed with 100% O2 for 96 h plus intraperitoneal injection of rHuEPO (1000 U/kg) daily. Other four groups were put into oxygen chamber and breathed with 100% O2 for 24, 48, 72 and 96 h respectively. Arterial blood gases were measured to calculate oxygenation index. Wet-to-dry weight ratios of left lung were measured. The contents of TNF-α and IL-1β in bronchoalveolar lavage fluid (BALF) were assayed with radioimmunoassay. The expressions of Bax and Bcl-2 proteins in the lung were determined withWestern blot and immunohistochemisty. The changes of lung histopathology were assessed by hematoxylin and eosin stain and observed under light microscope. Results After breathing 100% O2 , the oxygenation index decreased gradually and reached minimal value at 96 h. The wet-to-dry weight ratio of left lung increased gradually and reached maximal value at 96 h. The contents of TNF-α and IL-1β in BALF reached maximal value at 48 h and then decreased gradually. The expression of Bax protein increased, but the expression of Bcl-2 protein decreased gradually in the lung. Compared with the 96 h group, the oxygenation index was higher, wet-to-dry weight ratio and contents of TNF-α and IL-1β in BALF decreased, the expression of Bax protein decreased, and the expression of Bcl-2 protein increased in the lung of the rHuEPO group. Conclusion rHuEPO can attenuate hyperoxia-induced lung injury of adult rats by down-regulating expression of Bax protein and up-regulating expression of Bcl-2 protein.
Objective To investigate the antibiotic resistance and their genetic homology of stenotrophomonas maltophilia isolated from January 2005 to February 2006 at intensive care unit(ICU) of 6 hospitals in Bejing area.Methods The minimal inhibitory concentration(MIC) of 12 antibiotics against 82 strenotrophomonas maltophilia was determined by broth dilution method.PFGE was used to analyze the homology of 82 stenotrophomonas maltophilia.Results The drug sensitivity tests in vitro showed these strains were resistance to commonly-used antibiotics.Antibiotics with sensitive rate over 50% included Doxycycline, gatifloxacin,cefoperazone-sulbactam,levofloxacin,Compound sulfamethoxazole,Ceftazidime and ticarcillin- clavulanate. 7-18 DNA bands of different size were present in the gel and different homology was shown among the 82 strains.Four couples with homology over 85% were isolated from the same ICU.Three strain were same clones in PLA General Hospitals first hospital.2 couples from the different wards had homology of 80.6% and 79.6% of,respictively.Others strains had either poor or no homology.Conclusions No clonal outbreak is certified at ICU of 6 hospitals in Beijing area. There are only vertical dissemination of single clone in 6 ICU wards.PFGE is an effective approach for drug resistance test and epidemic analysis.
Objective To establish a rabbit model of ventilator-induced lung injury. Methods Fourty healthy New Zealand rabbits were randomly divided into 3 groups: ie. a routine 8 mL/kg tidal volume group( VT8 group) , 25 mL/kg large tidal volume group( VT25 group) , and 40 mL/kg large tidal volume group( VT40 group) . VT25 and VT40 group were further divided into 2 hours and 4 hours ventilation subgroups. Arterial blood gas, lung mechanical force and hemodynamic parameters were monitored. Lungtissue was sampled for evaluate lung wet/dry ratio and lung injury by HE stain. Bronchoalveolar lavage fluid ( BALF) was collected for measurement of protein concentration, total and differential cell counts. Results Compared with VT8 group, lung injury score in both VT40 and VT25 groups were elevated significantly, ofwhich 4 hour VT40 subgroup was the highest. Lung pathology examination of VT40 group revealed apparent alveolar deformation, interstitial and alveolar space exudation, inflammatory cells infiltration, pulmonary consolidation and alveolar hemorrhage. Lung pathology examination of VT25 group showed pulmonary intervalthickening, inflammatory cells infiltration, while alveolar intravasation was mild. Blood gas analysis showed that PaO2 /FiO2 was deteriorated with time in VT25 and VT40 groups, and PaO2 /FiO2 at the 3 hours in VT40 group( lt; 300 mm Hg) had met the acute lung injury standard, while which in VVT25 group was above 300 mmHg. Lung wet/dry ratio, BALF protein concentration, total nucleated cell and neutrophilic leukocyte were elevated in both VT25 and VT40 groups, of which 4 hours VT40 group was the highest. Conclusion Using 4 hours ventilation at a tidal volume of 40 mL/kg can successfully establish the rabbit model of ventilator-induced lung injury.