west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "MU Junsheng." 2 results
  • Research Progress of Relationship between Mitochondrial Fusion Protein 1,Mitochondrial Fusion Protein 2 and Physiological Function of Cardiomyocyte

    The main function of mitochondrial fusion protein 1 (Mfn1) and mitochondrial fusion protein 2 (Mfn2) was originally thought to be just regulating the fusion of mitochondrial outer membrane. But in recent years,many studies on these two proteins show that they are involved in many important cellular physiological processes including proliferation,apoptosis,necrosis and regulation of respiratory function and oxidative metabolism. There are many aspects of the influenceof Mfn1 and Mfn2 on cardiomyocyte,which have not been thoroughly studied yet,sometimes with even contradictoryconclusions. But these two proteins definitely have significant impact on the growth,development and physiological functionof cardiomyocyte. To investigate the function and mechanism of Mfn1 and Mfn2 in various physiological processes of cardiomyocyte is of great significance for in vitro studies of physiological functions of cardiomyocyte and technological development of myocardial tissue engineering and transplantation in vivo. This article mainly focuses on recent research progress of the influence of Mfn1 and Mfn2 on various physiological functions of cardiomyocyte.

    Release date:2016-08-30 05:47 Export PDF Favorites Scan
  • Research Progress of Myocardial Tissue Engineering Extracellular Matrix

    The establishing of myocardial tissue engineering techniques not only solve a series of issues that generate in cell and tissue transplantation after myocardial infarction, but also create a platform for selecting better materials and transplantation techniques. However, both experimental animal studies and recent clinical trials indicate that current transplantation techniques still have many defects, mainly including lack of suitable seed cells, low survival rate and low differentiation rate after transplantation. In this context, extracellular matrix (ECM), as myocardial tissue engineering scaffold materials, has gained increasing attention and become a frontier and focus of medical research in recent years. ECM is no longer merely regarded as a scaffold or a tissue, but plays an important role in providing essential signals to influence major intracellular pathways such as cell proliferation, differentiation and metabolism. The involved models of ECM can be classified into following types:natural biological scaffold materials, synthetic polymer scaffold materials and composite scaffold materials with more balanced physical and biological properties. This review mainly introduces research progress of ECM in myocardial tissue engineering and ECM materials.

    Release date:2016-08-30 05:50 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content