west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "ShenYin" 2 results
  • Application of Micron Ⅳ retinal imaging system in three different types of mouse models

    ObjectiveTo evaluate Micron Ⅳ retinal imaging system in three mouse models of retinal diseases. MethodsMouse models of oxygen induced retinopathy (OIR) model (OIR group), N-methyl-N nitrosourea (MNU) model (MNU group) and N-methyl-D-aspartate (NMDA) model (NMDA group) were induced in 24 healthy male C57BL/6J mice. Fundus photograph, fundus fluorescein angiography (FFA) and optical coherence tomography (OCT) and electroretinogram (ERG) were used to evaluate these mice. All the imaging examinations were performed by Micron Ⅳ retinal imaging system. ResultsOIR mice showed tortuous and dilated retinal vessels in fundus photograph, neovascularization plexus and vascular leakage in FFA, and epiretinal fibrovascular tissue and tortuous expansion vascular vessels in OCT. MNU mice showed wax yellow optic disk without retinal pigmentary changes, slight thinning of retinal blood vessels in FFA, and normal structure and thickness in OCT. The a-wave amplitudes of the maximum mixed response decreased significantly, and were (15.38±4.36) μV and (13.78±5.52) μV at 2 or 3 days of modeling, respectively. NMDA mice showed a pale retina with vasospasm. ERG revealed that there was no obvious change in latency of a- and b-wave, but significantly decreased amplitude of b-wave at 12 hours and 24 hours after modeling with (72.28±7.18) μV and (65.35±9.18) μV, respectively. ConclusionMicron Ⅳ retinal imaging system is a real-time, non-invasive tool to study the retinal structure and function in animal models of retinal diseases.

    Release date: Export PDF Favorites Scan
  • The application of optogenetics in the treatment of retinal degeneration disease

    Optogenetics is a novel technique which combines optics with genetics. Using genetic means, a selected opsin protein is ectopically expressed in target neurons, which are then stimulated by light to moderate the neuronal circuit, as a consequence to regulate the animal's behaviors. Retinal degeneration like retinitis pigmentosa and aged macular degeneration causes visual impairment and eventual blindness. Optogenetics techniques have opened the door to creating artificial photoreceptors in the remaining retinal circuits of retinal degeneration retinas via gene therapy. However, there are still limitations in optogenetics technique, for example, potential risk in virus infection, the choice of target cells and the low visual resolution of the experiment animal. It has been reported that vision was successfully restored to a certain extent in animal model using optogenetics technique. With higher photosensitivity of opsin protein, longer activation kinetics and higher transfection efficiency of virus vector, optogenetics techniques' application in ophthalmology will be improved.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content