Objective To study the influence of brominated furanones on the biofilm (BF) formation of Staphylococcus epidermidis (SE) on polyvinyl chloride(PVC) materials, and provide new ideas for the research of surface modification of materials and clinical treatment of biomaterial centered infection. Methods We chose three kinds of brominated furanone with representative chemical structure for our research which were respectively 3,4dibromo-5-hydroxy2 (5H) -furanone (Mucobromic acid) in the first furanone group, 4-bromo-5(4-methoxyphenyl)3(methylamino)2(5H)furanone in the second furanone group, and 3,4dibromo-5,5-bis(4-methylphenyl)2(5H)-furanone in the third furanone group. The PVC material soaked with 75% ethanol for 5minutes was classified as the control group. The surface coating of the PVC materials in the four groups all underwent modification respectively and then they were cocultivated with staphylococcus epidermidis together. Confocal laser scanning microscope(CLSM) was adopted to detect the thickness of bacterium BF and bacterium community quantity unit area on PVC materials and scanning electron microscope(SEM) was used to observe surface structure of SE, BF formation at 6 h, 12 h, 18 h and 24 h respectively. Results The results of CLSM showed that, compared with the control group, SE bacterium community quantity unit area and the thickness of bacterium BF on the PVC material surface in the second furanone group were obviously smaller (Plt;0.05). SE bacterium community quantity unit area and thickness of bacterium BF on PVC material surface in the first and the third furanone groups had no significant difference (Pgt;0.05). The result of SEM showed that, the quantity of SE bacterium community unit area on PVC material surface in the second furanone group were smaller than that of the control group at 6 hours. The biofilm structure on PVC material surface in the control group was formed at 18 hours, but there were no mature biofilm structure on PVC material surface in the second furanone group at 18 hours. Conclusion The impact of different brominated furanone on SE biofilm formation on the surface of PVC materials is different. The second kind of furanone can inhibit the quantity of SE bacterium community unit area and SE biofilm formation on the surface of PVC materials.
Objective The intercellular adhesion (ica) gene of Staphylococcus epidermidis (SE) is a key factor to bacterial aggregation, to analysis the genotype of iatrogenic SE and to explore the effect of iatrogenic SE ica operon on theformation of bacterial biofilm on the surface of polyvinyl chloride (PVC). Methods Fifty-six cl inical isolates of iatrogenic SEwere selected, and PCR and gene sequencing were used to detect the genes related with bacterial biofilm formation. The genes contained 16S rRNA, autolysin (atlE), fibrinogen binding protein (fbe), and icaADB. The bacteria suspension of 1 × 105 cfu/mL iatrogenic SE was prepared; according to the test results of target genes, the PVC material and the genotype of icaADB+, atlE+, fbe+ strains were co-cultivated as the ica positive group; the PVC material and the genotype of icaADB-, atlE+, fbe+ strains were co-cultivated as the ica negative group. The thickness of biofilm and bacterial community quantity unit area on PVC materials were measured by confocal laser scanning microscope, and the surface structure of biofilm formation was observed by scanning electron microscope (SEM) at 6, 12, 18, 24, and 30 hours. Results The positive rate of 16S rRNA of iatrogenic SE strains was 100% (56/56). The genotype of icaADB+, atlE+, and fbe+ strains accounted for 57.1% (32/56). The genotype of icaADB-, atlE+, and fbe+ strains accounted for 37.5% (21/56). The sequencing results showed that the product sequences of 16S rRNA, atlE, fbe, and icaADB were consistent with those in GenBank. With time, no significant bacterial biofilm formed on the surface of PVC in ica operon negative group. But in ica operon positive group, the number of bacterial community was gradually increased, and the volume of bacterial biofilms was gradually increased on the surface of PVC. At 24 hours, mature bacterial biofilm structure formed, and at 30 hours, the volume of bacterial biofilms was tending towards stabil ity. The thickness of biofilm (F=6 714.395, P=0.000) and the bacterial community quantity unit area on PVC materials (F=435.985, P=0.000) in ica operon positive groupwere significantly higher than those in ica operon negative group. Conclusion Iatrogenic SE can be divided into 2 types ofica operon negative and ica operon positive bacteria. The iatrogenic SE ica operon can strengthen bacterium biofilm formation capabil ity on PVC materials, bacterium community quantity, and thickness of biofilm, it plays an important role in bacterium biofilm formation on PVC materials.
ObjectiveTo investigate biofilm formation on the surface of silica gel by breast surgery clinical specimens of Staphylococcus epidermidis and to analyze the relationship between biofilm formation and icaA, icaD, and accumulation-associated protein (aap) gene. MethodsBetween December 2011 and January 2013, 44 strains of Staphylococcus epidermidis were isolated from the clinical specimens of the female patients who had no symptom of infection. The icaA, icaD, and aap genes were detected by PCR and 4 genotypic groups were divided:icaA+icaD+/aap+ group (group A), icaA+icaD+/aap- group (group B), icaA-icaD-/aap+ group (group C), and icaA-icaD-/aap- group (group D). Biofilms mass was semi-quantified by semi-quantitative adherence assay after 8, 12, 24, 30, and 36 hours of incubation. The thickness of biofilms was measured by confocal laser scanning microscope (CLSM) at 12 and 24 hours after incubation. The ultrastructure of biofilms was observed by scanning electron microscope (SEM) at 24 hours after incubation. ResultsPCR test showed that 13 strains were icaA+icaD+/aap+(group A), 12 strains were icaA+icaD+/aap-(group B), 16 strains were icaA-icaD-/aap+(group C), and 3 strains were icaA-icaD-/aap-(group D). In 29 strains which had bacterial biofilm formation (65.9%), there were 13 strains in group A, 7 strains in group B, 9 strains in group C, and 0 in group D. The result of semi-quantitative adherence assay showed no significant difference in the absorbance (A) values among 4 groups at 8 hours (P>0.05). The A values of groups A, B, and C were significantly higher than that of group D at 12-36 hours, and group A was significantly higher than groups B and C (P<0.05), but there was no significant difference between groups B and C (P>0.05). The results of CLSM showed that the thickness of biofilm in groups A, B, and C was significantly larger than that in group D at 12 and 24 hours after incubation (P<0.05), and the thickness of biofilm in group A was significantly larger than that in groups B and C (P<0.05), but there was no significant difference between groups B and C (P>0.05). The result of SEM showed that the mature biofilm could be observed on the surface of silica gel in groups A, B, and C, and the ultrastructure of biofilms in group A were the most abundant and extensive among 3 groups. The ultrastructure of biofilm in group B was similar to that in group C. No obvious biofilms formed in group D. ConclusionicaA, icaD, and aap genes all play key roles in the process for biofilm formation of Staphylococcus epidermidis. Futhermore, aap gene enhance the ability of biofilm-forming when aap and ica genes coexist, so the biofilm-forming ability of icaA+icaD+/aap+ is strongest.
ObjectiveTo explore the function of intercellular adhesion A (icaA), fibrinogen binding protein (fbe), and accumulation-associated protein (aap) genes in formation of Staphylococcus epidermidis-Candida albicans mixed species biofilms. MethodsThe experiment was divided into 3 groups:single culture of Staphylococcus epidermidis ATCC35984 (S. epidermidis group) or Candida albicans ATCC10231 (C. albicans group), and co-culture of two strains (mixed group) to build in vitro biofilm model. Biofilm mass was detected by crystal violet semi-quantitative adherence assay at 2, 4, 6, 8, 12, 24, 48, and 72 hours after incubation. XTT assay was performed to determine the growth kinetics in the same time. Scanning electron microscopy (SEM) was used to observe the ultrastructure of the biofilms after 24 and 72 hours of incubation. The expressions of icaA, fbe, and aap genes were analyzed by real-time fluorescent quantitative PCR. ResultsCrystal violet semi-quantitative adherence assay showed that the biofilms thickened at 12 hours in the S. epidermidis and mixed groups; after co-cultured for 72 hours the thickness of biofilm in mixed group was more than that in the S. epidermidis group, and there was significant difference between 2 groups at the other time (P<0.05) except at 72 hours (P>0.05). In C. albicans group, the biofilm started to grow at 12 hours of cultivation, but the thickness of the biofilm was significantly lower than that in the mixed group in all the time points (P<0.05). XTT assay showed that the overall growth speed in the mixed group was greater than that in the C. albicans group, and it was greater than that in the S. epidermidis group at 48 hours; there was no significant difference in the growth speed between the mixed groups and the S. epidermidis group in the other time points (P>0.05) except at 12 hours (P<0.05). The absorbance (A) value in the mixed group was lower than that in the S. epidermidis group at 2 and 4 hours, but no significant difference was shown (P>0.05); the A value of mixed group was significantly higher than that of the C. albicans group after 6 hours (P<0.05). SEM observation showed that mature biofilms with complex structure formed in all groups. The real-time fluorescent quantitative PCR showed the expressions of fbe, icaA, and aap genes in mixed group increased 1.93, 1.52, and 1.46 times respectively at 72 hours compared with the S. epidermidis group (P<0.05). ConclusionMixed species biofilms have more complex structure and are thicker than single species biofilms of Staphylococcus epidermidis or Candida albicans, which is related to increased expressions of the icaA, fbe, and aap genes of Staphylococcus epidermidis.
ObjectiveTo investigate the correlation between infection and capsular contracture by observing the effect of infection on the formation of the surrounding capsule after breast implants. MethodsThree healthy adult female Diannan small-ear pigs underwent augmentation mammaplasty using miniature implants, which were randomly divided into group A (12 nipples), group B (10 nipples), and group C (12 nipples). Staphylococcus epidermidis (SE ATCC12228 and SE RP62A, 1.2×105 CFU/mL) was inoculated into the periprosthetics of groups B and C, and sterile PBS in group A before breast implants. Then the silica gel prosthesis was put, total 34 implants in 3 groups. After 13 weeks, the capsule was harvested to measure the capsular tension and weight. HE staining was used to observe the structure characteristics of the capsule and to measure the capsule thickness, Van-Gieson (VG) staining to observe the capsule collagen characteristics, and α-smooth muscle actin (α-SMA) immunocytochemistry staining to observe myofibroblasts in capsule. ResultsPrimary healing of incision was obtained, and 3 small-ear pigs showed stable life indication. The complete fibrous capsule was observed after 13 weeks in 3 groups. Capsule tension showed no significant difference among 3 groups (P>0.05). Capsule weight was significantly greater in group C than in groups A and B (P<0.05). HE staining showed that capsule structure of the 3 groups was similar with obvious dense layer and loose layer, and the capsule thickness was also significantly greater in group C than in groups A and B (P<0.05), but no significant difference was found between groups A and B (P>0.05). VG staining showed that collagenous fiber in the capsule were more compact in group C than in groups A and B. The α-SMA immunocytochemistry staining indicated the myofibroblasts in capsule were the most in group C. ConclusionInfection after breast implants has obvious impacts on the formation of the capsule, and there was a causal link between infection and capsular contracture.
ObjectiveTo establish an in vitro model of Candida albicans-Staphylococcus epidermidis mixed species biofilm on polyvinyl chloride (PVC) material, and to observe mixed species biofilm formation and its microstructure. MethodsStaphylococcus epidermidis bacteria (ATCC35984) and Candida albicans fungal (ATCC10231)were co-incubated with 0.5 cm diameter PVC pieces in tryptic soy broth (TSB) to form mixed specie biofilms (experimental group). At 2, 6, 12, 24, 48, and 72 hours, the thicknesses of the biofilms, the number of bacteria per sight, and the percentage of viable cells in biofilms were measured, and three-dimensional images of biofilms were obtained using confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) at 48 hours. PVC material cultured in the TSB medium served as control group. ResultsIn control group, there was no pathogenic bacteria adhesion on the PVC material surface. In experimental group, CLSM showed that colonies and biofilm formation were found at 6 hours after co-culture, and gradually increased with time. The pathogenic bacteria colonies reached the peak at 24 hours, and biofilm thickness attained peak value at 48 hours. In experimental group, the number of colony was significantly different among 2, 6, and 24 hours, and between 2, 6 hours and 48, 72 hours (P<0.05), but no significant difference was found among 24, 48, and 72 hours (P>0.05). The biofilm thickness showed significant difference between the other time points (P<0.05) except between 48 and 72 hours (P>0.05). The percentage of viable cells in the outer layers of the biofilm was significantly higher than that in inner and middle layers at 48 hours (P<0.05). Three-dimensional reconstruction displayed that the surface of mixd species was uneven; living bacterium mainly located at the protuberance, and dead bacteria mainly located at the concaves. SEM image showed that Staphylococcus epidermidis attached to various forms of Candida albicans (spores, pseudohyphae, hyphae) gradually, and formed multilayer reticulate sophisticated structure on the surface of PVC with time. ConclusionCandida albicans-Staphylococcus epidermidis mixed species biofilm is sophisticated in structure. The combination of CLSM, SEM, and three-dimensional image reconstruction technology is ideal for investigation of mixed species biofilm on PVC material.
ObjectiveTo investigate the effect of the estradiol hormones on biofilm formati on and structure of Staphylococcus epidermidis after breast implant surgery. MethodsThe concentration of Staphylococcus epidermidis strains ATCC35984 was adjusted to 1×107 CFU/mL or 1×108 CFU/mL, and the type strains were incubated on the surface of silica gel in 125 pmol/L estradiol suspensions to prepare bacterial biofilms model in vitro. After cultured in vitro for 4, 6, 12, 24, 48, and 72 hours, bacteria growth and biofilm formation ability were assessed by means of the XTT and crystal violet staining respectively. According to the above results, the bacterial suspension concentration was selected for experiments. The experimental concentration of Staphylococcus epidermidis ATCC35984 suspension and the concentrations of 50, 125, 250, 500 pmol/L estradiol suspensions were mixed with silica gel respectively to prepare biofilm model in vitro, no estradiol suspension served as control group. The experimental concentration of Staphylococcus epidermidis ATCC12228 suspension was used to prepare the same model in the negative control. After cultured in vitro for 4, 6, 12, 24, 48, and 72 hours, the same methods were used to assess the bacteria growth dynamics and biofilm forming ability, and the scanning electron microscope (SEM) was used to observe bacterial biofilm structure cultured on the surface of silica gel; the laser scanning confocal microscope (CLSM) was used to measure bacterial biofilm thickness on the surface of silica gel after 6, 12, and 24 hours. ResultsAccording to the results of semi quantitative detection of crystal violet stain and XTT methods, the bacterial suspension of 1×107 CFU/mL was selected for the experiment. XTT results indicated that the growth rates of ATCC12228 strain (at 4, 6, 12, 24, and 72 hours) and ATCC35984 strain (at 4, 6, 24, and 72 hours) in 125, 250, and 500 pmol/L estradiol were significantly faster than those in 0 and 50 pmol/L (P < 0.05). The growth rate of 500 pmol/L group was significantly faster than 125 and 250 pmol/L groups at 4, 6, and 72 hours (P < 0.05), and the growth rate of 250 pmol/L group was significantly faster than that of 125 pmol/L group at 72 hours (P < 0.05), but there was no significant difference between 0 and 50 pmol/L groups (P>0.05). At the same time point and same estradiol concentration, the growth rates showed no significant difference between 2 strains (P>0.05). Semi quantitative detection of crystal violet staining showed no biofilm formed in ATCC12228 strain in all estradiol concentration groups at different time points. In ATCC35984 strain, the biofilm was found at 4 hours and gradually thickened with time, reached the peak at 24 hours. After cultured for 4 and 6 hours, the biofilm of 0 pmol/L groups were significantly thicker than that of 125, 250, and 500 pmol/L groups (P < 0.05). At 12 hours, the 125 pmol/L group had the thickest biofilm, showing significant difference when compared with other groups (P < 0.05). The CLSM showed ATCC35984 biofilm thickness of 125, 250, and 500 pmol/L was significantly less than that of 0 and 50 pmol/L groups at 6 hours (P < 0.05), but difference was not significant between other groups (P>0.05). Then the thickness of the biofilm increased gradually, and the thickness of 125 pmol/L group was significantly larger than that of other concentration groups at 12 and 24 hours (P < 0.05). The SEM observation showed that the biofilm of 125 pmol/L group was denser and thicker than that of the other concentration groups at each time point. ConclusionHigh level estradiol can promote bacteria growth, biofilm formation, and biofilm maturity of Staphylococcus epidermidis.
ObjectiveTo investigate the effect of accessory gene regulator C (agr C) specific binding peptides (named N1) on the biofilm formation of Staphylococcus epidermidis on the surface of polyvinyl chloride (PVC) materials in vitro.MethodsFirstly, the two strains (ATCC35984, ATCC12228) were cultured with N1 at concentrations of 100, 200, 400, 800, and 1 600 μg/mL, respectively. The control group was cultured with agrC specific binding unrelated peptides (named N0) at the same concentrations and the absorbance (A) value was measured after 24 hours to determine the optimal bacteriostatic concentration of N1. The two strains were cultured with N1 and N0 of the optimal concentration, respectively. The A values were measured at 6, 12, 18, 24, 30, and 48 hours to observe the effect of N1 on the biofilm formation ability of Staphylococcus epidermidis. On this basis, the surface structure of the biofilm on the surface of PVC material was observed by scanning electron microscopy after 6, 12, 18, 24, and 30 hours of incubation with PVC material sheet. The thickness of the biofilm was observed by laser confocal microscopy after 6, 12, 18, and 24 hours of incubation with ATCC35984 strain.ResultsThe optimal bacteriostatic concentration of N1 was 800 μg/mL. ATCC 12228 strain did not form obvious biofilm after being cultured with N1 and N0. When ATCC35984 strain was cultured with N1 and N0 for 12 hours, the difference in biofilm formation ability between groups N1 and N0 was statistically significant (P<0.05), but there was no significant difference at 6, 18, 24, 30, and 48 hours (P>0.05). Scanning electron microscopy examination showed that mature biofilm structure was observed in ATCC35984 strain and was not observed in ATCC12228 strain. Laser confocal microscopy observation showed that the number of bacteria in the group N1 was significantly lower than that in the group N0 at 12 hours, and the most of bacteria were dead bacteria. There was no significant difference in the number of bacteria at 6, 18, and 24 hours, and the most of them were live bacteria. The biofilm thickness of group N1 was significantly lower than that of group N0 at 12 and 18 hours (P<0.05).ConclusionThe intensity of N1 inhibiting the formation of Staphylococcus epidermidis biofilm is dose-dependent. During the aggregation period, N1 can inhibit the biofilm formation by hindering the bacterial growth and aggregation. The inhibition effect on mature biofilm is not obvious.
ObjectiveTo study the effect of intercellular adhesion (ica) operon of Staphylococcus epidermidis on the inflammation associated with mixed biofilm of Staphylococcus epidermidis and Candida albicans on endotracheal tube material in rabbits. MethodsThe standard strains of Staphylococcus epidermidis RP62A (ica operon positive, positive group) and ATCC12228 (ica operon negative, negative group) were taken to prepare a bacterial solution with a concentration of 1×106 CFU/mL, respectively. Then, the two bacterial solutions were mixed with the standard strain of Candida albicans ATCC10231 of the same concentration to prepare a mixed culture solution at a ratio of 1∶1, respectively. The mixed culture solution was incubated with endotracheal tube material for 24 hours. The formation of mixed biofilm on the surface of the material was observed by scanning electron microscope. Thirty New Zealand rabbits, aged 4-6 months, were divided into two groups (n=15), and the endotracheal tube materials of the positive group and the negative group that were incubated for 24 hours were implanted beside the trachea. The body mass of rabbits in the two groups was measured before operation and at 1, 3, and 7 days after operation. At 1, 3, and 7 days after operation, the levels of interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), and monocytechemotactic protein 1 (MCP-1) were detected by using an ELISA test kit. At 7 days after operation, the formation of mixed biofilm on the surface of the endotracheal tube materials was observed by scanning electron microscope, the inflammation and infiltration of tissues around the materials were observed by HE staining, and the bacterial infections in heart, lung, liver, and kidney were observed by plate colony counting method.ResultsScanning electron microscope observation showed that the mixed biofilm structure was obvious in the positive group after 24 hours in vitro incubation, but no mixed biofilm formation was observed in the negative group. In vivo studies showed that there was no significant difference in body mass between the two groups before operation and at 1, 3, and 7 days after operation (P>0.05). Compared with the negative group, the levels of MCP-1 and IL-1β at 1 day, and the levels of IL-1β, MCP-1, IL-6, and TNF-α at 3 and 7 days in the positive group all increased, with significant differences (P<0.05). Scanning electron microscope observation showed that a large amount of Staphylococcus epidermis and mixed biofilm structure were observed in the positive group, and a very small amount of bacteria was observed in the negative group with no mixed biofilm structure. HE staining of surrounding tissue showed inflammatory cell infiltration in both groups, and neutrophils and lymphocytes were more in the positive group than in the negative group. There was no significant difference in the number of bacterial infections in heart and liver between the two groups (P>0.05). The number of bacterial infections in lung and kidney in the positive group was higher than that in negative group (P<0.05).ConclusionIn the mixed infection of Staphylococcus epidermidis and Candida albicans, the ica operon may strengthen the structure of the biofilm and the spread of the biofilm in vivo, leading to increased inflammatory factors, and the bacteria are difficult to remove and persist.