west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "ZHANG Xiaotong" 2 results
  • Advances in methods and applications of single-cell Hi-C data analysis

    Chromatin three-dimensional genome structure plays a key role in cell function and gene regulation. Single-cell Hi-C techniques can capture genomic structure information at the cellular level, which provides an opportunity to study changes in genomic structure between different cell types. Recently, some excellent computational methods have been developed for single-cell Hi-C data analysis. In this paper, the available methods for single-cell Hi-C data analysis were first reviewed, including preprocessing of single-cell Hi-C data, multi-scale structure recognition based on single-cell Hi-C data, bulk-like Hi-C contact matrix generation based on single-cell Hi-C data sets, pseudo-time series analysis, and cell classification. Then the application of single-cell Hi-C data in cell differentiation and structural variation was described. Finally, the future development direction of single-cell Hi-C data analysis was also prospected.

    Release date: Export PDF Favorites Scan
  • An identification method of chromatin topological associated domains based on spatial density clustering

    The rapid development of high-throughput chromatin conformation capture (Hi-C) technology provides rich genomic interaction data between chromosomal loci for chromatin structure analysis. However, existing methods for identifying topologically associated domains (TADs) based on Hi-C data suffer from low accuracy and sensitivity to parameters. In this context, a TAD identification method based on spatial density clustering was designed and implemented in this paper. The method preprocessed the raw Hi-C data to obtain normalized Hi-C contact matrix data. Then, it computed the distance matrix between loci, generated a reachability graph based on the core distance and reachability distance of loci, and extracted clustering clusters. Finally, it extracted TAD boundaries based on clustering results. This method could identify TAD structures with higher coherence, and TAD boundaries were enriched with more ChIP-seq factors. Experimental results demonstrate that our method has advantages such as higher accuracy and practical significance in TAD identification.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content